namespace-Pt commited on
Commit
5b72a55
1 Parent(s): c0358ac

Upload folder using huggingface_hub

Browse files
added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/share/shared_models/qwen-2-7b-instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_qwen2.Qwen2Config",
8
+ "AutoModelForCausalLM": "modeling_qwen2.Qwen2ForCausalLM"
9
+ },
10
+ "attention_dropout": 0.0,
11
+ "beacon_attend_prev": true,
12
+ "beacon_attn": "full-coverage",
13
+ "beacon_embed_init": "eos",
14
+ "beacon_parallel_window": 1,
15
+ "beacon_param": [
16
+ "q",
17
+ "k",
18
+ "v"
19
+ ],
20
+ "beacon_pos": "interleave",
21
+ "beacon_ratio": [
22
+ 2,
23
+ 4,
24
+ 8,
25
+ 16,
26
+ 32
27
+ ],
28
+ "beacon_ratio_mix": "adapt-1024",
29
+ "beacon_sink_size": 0,
30
+ "beacon_stride": 2048,
31
+ "beacon_window": 2048,
32
+ "bos_token_id": 151643,
33
+ "eos_token_id": 151645,
34
+ "hidden_act": "silu",
35
+ "hidden_size": 3584,
36
+ "initializer_range": 0.02,
37
+ "intermediate_size": 18944,
38
+ "max_position_embeddings": 32768,
39
+ "max_window_layers": 28,
40
+ "model_type": "qwen2",
41
+ "num_attention_heads": 28,
42
+ "num_hidden_layers": 28,
43
+ "num_key_value_heads": 4,
44
+ "rms_norm_eps": 1e-06,
45
+ "rope_scaling": null,
46
+ "rope_theta": 1000000.0,
47
+ "sliding_window": 131072,
48
+ "tie_word_embeddings": false,
49
+ "torch_dtype": "bfloat16",
50
+ "transformers_version": "4.39.3",
51
+ "use_cache": true,
52
+ "use_sliding_window": false,
53
+ "vocab_size": 152064
54
+ }
configuration_qwen2.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Qwen2 model configuration"""
16
+
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ QWEN2_PRETRAINED_CONFIG_ARCHIVE_MAP = {
24
+ "Qwen/Qwen2-7B-beta": "https://huggingface.co/Qwen/Qwen2-7B-beta/resolve/main/config.json",
25
+ }
26
+
27
+
28
+ class Qwen2Config(PretrainedConfig):
29
+ r"""
30
+ This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a
31
+ Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
32
+ with the defaults will yield a similar configuration to that of
33
+ Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).
34
+
35
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
36
+ documentation from [`PretrainedConfig`] for more information.
37
+
38
+
39
+ Args:
40
+ vocab_size (`int`, *optional*, defaults to 151936):
41
+ Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the
42
+ `inputs_ids` passed when calling [`Qwen2Model`]
43
+ hidden_size (`int`, *optional*, defaults to 4096):
44
+ Dimension of the hidden representations.
45
+ intermediate_size (`int`, *optional*, defaults to 22016):
46
+ Dimension of the MLP representations.
47
+ num_hidden_layers (`int`, *optional*, defaults to 32):
48
+ Number of hidden layers in the Transformer encoder.
49
+ num_attention_heads (`int`, *optional*, defaults to 32):
50
+ Number of attention heads for each attention layer in the Transformer encoder.
51
+ num_key_value_heads (`int`, *optional*, defaults to 32):
52
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
53
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
54
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
55
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
56
+ by meanpooling all the original heads within that group. For more details checkout [this
57
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
58
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
59
+ The non-linear activation function (function or string) in the decoder.
60
+ max_position_embeddings (`int`, *optional*, defaults to 32768):
61
+ The maximum sequence length that this model might ever be used with.
62
+ initializer_range (`float`, *optional*, defaults to 0.02):
63
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
64
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
65
+ The epsilon used by the rms normalization layers.
66
+ use_cache (`bool`, *optional*, defaults to `True`):
67
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
68
+ relevant if `config.is_decoder=True`.
69
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
70
+ Whether the model's input and output word embeddings should be tied.
71
+ rope_theta (`float`, *optional*, defaults to 10000.0):
72
+ The base period of the RoPE embeddings.
73
+ use_sliding_window (`bool`, *optional*, defaults to `False`):
74
+ Whether to use sliding window attention.
75
+ sliding_window (`int`, *optional*, defaults to 4096):
76
+ Sliding window attention (SWA) window size. If not specified, will default to `4096`.
77
+ max_window_layers (`int`, *optional*, defaults to 28):
78
+ The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
79
+ attention_dropout (`float`, *optional*, defaults to 0.0):
80
+ The dropout ratio for the attention probabilities.
81
+
82
+ ```python
83
+ >>> from transformers import Qwen2Model, Qwen2Config
84
+
85
+ >>> # Initializing a Qwen2 style configuration
86
+ >>> configuration = Qwen2Config()
87
+
88
+ >>> # Initializing a model from the Qwen2-7B style configuration
89
+ >>> model = Qwen2Model(configuration)
90
+
91
+ >>> # Accessing the model configuration
92
+ >>> configuration = model.config
93
+ ```"""
94
+
95
+ model_type = "qwen2"
96
+ keys_to_ignore_at_inference = ["past_key_values"]
97
+
98
+ def __init__(
99
+ self,
100
+ vocab_size=151936,
101
+ hidden_size=4096,
102
+ intermediate_size=22016,
103
+ num_hidden_layers=32,
104
+ num_attention_heads=32,
105
+ num_key_value_heads=32,
106
+ hidden_act="silu",
107
+ max_position_embeddings=32768,
108
+ initializer_range=0.02,
109
+ rms_norm_eps=1e-6,
110
+ use_cache=True,
111
+ tie_word_embeddings=False,
112
+ rope_theta=10000.0,
113
+ use_sliding_window=False,
114
+ sliding_window=4096,
115
+ rope_scaling=None,
116
+ max_window_layers=28,
117
+ attention_dropout=0.0,
118
+ beacon_window=1024,
119
+ beacon_stride=1024,
120
+ beacon_attn="full-coverage",
121
+ beacon_ratio=[2,4,8,16,32],
122
+ beacon_ratio_mix="step-random",
123
+ beacon_param=[],
124
+ beacon_embed_init="eos",
125
+ beacon_sink_size=0,
126
+ beacon_attend_prev=True,
127
+ beacon_pos="interleave",
128
+ beacon_parallel_window=1,
129
+ beacon_accum=True,
130
+ **kwargs,
131
+ ):
132
+ self.vocab_size = vocab_size
133
+ self.max_position_embeddings = max_position_embeddings
134
+ self.hidden_size = hidden_size
135
+ self.intermediate_size = intermediate_size
136
+ self.num_hidden_layers = num_hidden_layers
137
+ self.num_attention_heads = num_attention_heads
138
+ self.use_sliding_window = use_sliding_window
139
+ self.sliding_window = sliding_window
140
+ self.max_window_layers = max_window_layers
141
+ self.rope_scaling = rope_scaling
142
+
143
+ # for backward compatibility
144
+ if num_key_value_heads is None:
145
+ num_key_value_heads = num_attention_heads
146
+
147
+ self.num_key_value_heads = num_key_value_heads
148
+ self.hidden_act = hidden_act
149
+ self.initializer_range = initializer_range
150
+ self.rms_norm_eps = rms_norm_eps
151
+ self.use_cache = use_cache
152
+ self.rope_theta = rope_theta
153
+ self.attention_dropout = attention_dropout
154
+
155
+ self.beacon_window = beacon_window
156
+ self.beacon_stride = beacon_stride
157
+ self.beacon_attn = beacon_attn
158
+ self.beacon_ratio = beacon_ratio
159
+ self.beacon_ratio_mix = beacon_ratio_mix
160
+ self.beacon_param = beacon_param
161
+ self.beacon_embed_init = beacon_embed_init
162
+ self.beacon_sink_size = beacon_sink_size
163
+ self.beacon_attend_prev = beacon_attend_prev
164
+ self.beacon_pos = beacon_pos
165
+ self.beacon_parallel_window = beacon_parallel_window
166
+ self.beacon_accum = beacon_accum
167
+
168
+ super().__init__(
169
+ tie_word_embeddings=tie_word_embeddings,
170
+ **kwargs,
171
+ )
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 151643,
4
+ "eos_token_id": 151645,
5
+ "transformers_version": "4.39.3"
6
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c11326bec0cf5dc66e969095b2a5478bbf861b8754867b3b9f1c615373e9015b
3
+ size 4947453128
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90131a226ae38f7bd75c10a1af7686d01d129c8a5c3bf5f40a7afc5c4a9cac67
3
+ size 4991570400
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54af76f768c08a33318548c8185768165c0d8ab6d7afe1bbd20079dc42c68127
3
+ size 4991570464
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be55956e1438674b224d89ead13eb3f344889917899b7b5f5d321520255e7159
3
+ size 1225807416
model.safetensors.index.json ADDED
@@ -0,0 +1,515 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16156342272
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.beacon_embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.beacon_k_proj.bias": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.beacon_k_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.beacon_q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.beacon_q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.beacon_v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.beacon_v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
21
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
24
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.1.self_attn.beacon_k_proj.bias": "model-00001-of-00004.safetensors",
33
+ "model.layers.1.self_attn.beacon_k_proj.weight": "model-00001-of-00004.safetensors",
34
+ "model.layers.1.self_attn.beacon_q_proj.bias": "model-00001-of-00004.safetensors",
35
+ "model.layers.1.self_attn.beacon_q_proj.weight": "model-00001-of-00004.safetensors",
36
+ "model.layers.1.self_attn.beacon_v_proj.bias": "model-00001-of-00004.safetensors",
37
+ "model.layers.1.self_attn.beacon_v_proj.weight": "model-00001-of-00004.safetensors",
38
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
39
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
40
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
41
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
42
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
43
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
44
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
45
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.10.self_attn.beacon_k_proj.bias": "model-00002-of-00004.safetensors",
51
+ "model.layers.10.self_attn.beacon_k_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.10.self_attn.beacon_q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.10.self_attn.beacon_q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.10.self_attn.beacon_v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.10.self_attn.beacon_v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
57
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
60
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.11.self_attn.beacon_k_proj.bias": "model-00002-of-00004.safetensors",
69
+ "model.layers.11.self_attn.beacon_k_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.11.self_attn.beacon_q_proj.bias": "model-00002-of-00004.safetensors",
71
+ "model.layers.11.self_attn.beacon_q_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.11.self_attn.beacon_v_proj.bias": "model-00002-of-00004.safetensors",
73
+ "model.layers.11.self_attn.beacon_v_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
75
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
78
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
80
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.12.self_attn.beacon_k_proj.bias": "model-00002-of-00004.safetensors",
87
+ "model.layers.12.self_attn.beacon_k_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.12.self_attn.beacon_q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.12.self_attn.beacon_q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.12.self_attn.beacon_v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.12.self_attn.beacon_v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
93
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
96
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.13.self_attn.beacon_k_proj.bias": "model-00002-of-00004.safetensors",
105
+ "model.layers.13.self_attn.beacon_k_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.13.self_attn.beacon_q_proj.bias": "model-00002-of-00004.safetensors",
107
+ "model.layers.13.self_attn.beacon_q_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.13.self_attn.beacon_v_proj.bias": "model-00002-of-00004.safetensors",
109
+ "model.layers.13.self_attn.beacon_v_proj.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
111
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
114
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
116
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
122
+ "model.layers.14.self_attn.beacon_k_proj.bias": "model-00002-of-00004.safetensors",
123
+ "model.layers.14.self_attn.beacon_k_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.14.self_attn.beacon_q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.14.self_attn.beacon_q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.14.self_attn.beacon_v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.14.self_attn.beacon_v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
129
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
130
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
132
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
133
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
137
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
139
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.15.self_attn.beacon_k_proj.bias": "model-00002-of-00004.safetensors",
141
+ "model.layers.15.self_attn.beacon_k_proj.weight": "model-00002-of-00004.safetensors",
142
+ "model.layers.15.self_attn.beacon_q_proj.bias": "model-00002-of-00004.safetensors",
143
+ "model.layers.15.self_attn.beacon_q_proj.weight": "model-00002-of-00004.safetensors",
144
+ "model.layers.15.self_attn.beacon_v_proj.bias": "model-00002-of-00004.safetensors",
145
+ "model.layers.15.self_attn.beacon_v_proj.weight": "model-00002-of-00004.safetensors",
146
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
147
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
148
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
149
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
150
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
151
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
152
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
153
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
154
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
155
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
156
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
157
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
158
+ "model.layers.16.self_attn.beacon_k_proj.bias": "model-00002-of-00004.safetensors",
159
+ "model.layers.16.self_attn.beacon_k_proj.weight": "model-00002-of-00004.safetensors",
160
+ "model.layers.16.self_attn.beacon_q_proj.bias": "model-00002-of-00004.safetensors",
161
+ "model.layers.16.self_attn.beacon_q_proj.weight": "model-00002-of-00004.safetensors",
162
+ "model.layers.16.self_attn.beacon_v_proj.bias": "model-00002-of-00004.safetensors",
163
+ "model.layers.16.self_attn.beacon_v_proj.weight": "model-00002-of-00004.safetensors",
164
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
165
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
166
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
167
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
168
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
169
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
170
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
171
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
173
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
174
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
175
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.17.self_attn.beacon_k_proj.bias": "model-00002-of-00004.safetensors",
177
+ "model.layers.17.self_attn.beacon_k_proj.weight": "model-00002-of-00004.safetensors",
178
+ "model.layers.17.self_attn.beacon_q_proj.bias": "model-00002-of-00004.safetensors",
179
+ "model.layers.17.self_attn.beacon_q_proj.weight": "model-00002-of-00004.safetensors",
180
+ "model.layers.17.self_attn.beacon_v_proj.bias": "model-00002-of-00004.safetensors",
181
+ "model.layers.17.self_attn.beacon_v_proj.weight": "model-00002-of-00004.safetensors",
182
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
183
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
184
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
185
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
186
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
187
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
188
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
189
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
194
+ "model.layers.18.self_attn.beacon_k_proj.bias": "model-00003-of-00004.safetensors",
195
+ "model.layers.18.self_attn.beacon_k_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.18.self_attn.beacon_q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.18.self_attn.beacon_q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.18.self_attn.beacon_v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.18.self_attn.beacon_v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
201
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
204
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
209
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
211
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.19.self_attn.beacon_k_proj.bias": "model-00003-of-00004.safetensors",
213
+ "model.layers.19.self_attn.beacon_k_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.19.self_attn.beacon_q_proj.bias": "model-00003-of-00004.safetensors",
215
+ "model.layers.19.self_attn.beacon_q_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.19.self_attn.beacon_v_proj.bias": "model-00003-of-00004.safetensors",
217
+ "model.layers.19.self_attn.beacon_v_proj.weight": "model-00003-of-00004.safetensors",
218
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
219
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
221
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
222
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
223
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
224
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
226
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
227
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
228
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
229
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
230
+ "model.layers.2.self_attn.beacon_k_proj.bias": "model-00001-of-00004.safetensors",
231
+ "model.layers.2.self_attn.beacon_k_proj.weight": "model-00001-of-00004.safetensors",
232
+ "model.layers.2.self_attn.beacon_q_proj.bias": "model-00001-of-00004.safetensors",
233
+ "model.layers.2.self_attn.beacon_q_proj.weight": "model-00001-of-00004.safetensors",
234
+ "model.layers.2.self_attn.beacon_v_proj.bias": "model-00001-of-00004.safetensors",
235
+ "model.layers.2.self_attn.beacon_v_proj.weight": "model-00001-of-00004.safetensors",
236
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
237
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
238
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
239
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
240
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
241
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
242
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
243
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
245
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
247
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.20.self_attn.beacon_k_proj.bias": "model-00003-of-00004.safetensors",
249
+ "model.layers.20.self_attn.beacon_k_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.20.self_attn.beacon_q_proj.bias": "model-00003-of-00004.safetensors",
251
+ "model.layers.20.self_attn.beacon_q_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.20.self_attn.beacon_v_proj.bias": "model-00003-of-00004.safetensors",
253
+ "model.layers.20.self_attn.beacon_v_proj.weight": "model-00003-of-00004.safetensors",
254
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
255
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
257
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
258
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
259
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
260
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
261
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
262
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
263
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
264
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
265
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
266
+ "model.layers.21.self_attn.beacon_k_proj.bias": "model-00003-of-00004.safetensors",
267
+ "model.layers.21.self_attn.beacon_k_proj.weight": "model-00003-of-00004.safetensors",
268
+ "model.layers.21.self_attn.beacon_q_proj.bias": "model-00003-of-00004.safetensors",
269
+ "model.layers.21.self_attn.beacon_q_proj.weight": "model-00003-of-00004.safetensors",
270
+ "model.layers.21.self_attn.beacon_v_proj.bias": "model-00003-of-00004.safetensors",
271
+ "model.layers.21.self_attn.beacon_v_proj.weight": "model-00003-of-00004.safetensors",
272
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
273
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
274
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
275
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
276
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
277
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
278
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
279
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
280
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
281
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
282
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
283
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
284
+ "model.layers.22.self_attn.beacon_k_proj.bias": "model-00003-of-00004.safetensors",
285
+ "model.layers.22.self_attn.beacon_k_proj.weight": "model-00003-of-00004.safetensors",
286
+ "model.layers.22.self_attn.beacon_q_proj.bias": "model-00003-of-00004.safetensors",
287
+ "model.layers.22.self_attn.beacon_q_proj.weight": "model-00003-of-00004.safetensors",
288
+ "model.layers.22.self_attn.beacon_v_proj.bias": "model-00003-of-00004.safetensors",
289
+ "model.layers.22.self_attn.beacon_v_proj.weight": "model-00003-of-00004.safetensors",
290
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
291
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
292
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
293
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
294
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
295
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
296
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
297
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
298
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
299
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
300
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
301
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
302
+ "model.layers.23.self_attn.beacon_k_proj.bias": "model-00003-of-00004.safetensors",
303
+ "model.layers.23.self_attn.beacon_k_proj.weight": "model-00003-of-00004.safetensors",
304
+ "model.layers.23.self_attn.beacon_q_proj.bias": "model-00003-of-00004.safetensors",
305
+ "model.layers.23.self_attn.beacon_q_proj.weight": "model-00003-of-00004.safetensors",
306
+ "model.layers.23.self_attn.beacon_v_proj.bias": "model-00003-of-00004.safetensors",
307
+ "model.layers.23.self_attn.beacon_v_proj.weight": "model-00003-of-00004.safetensors",
308
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
309
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
310
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
311
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
312
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
313
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
314
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
315
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
316
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
317
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
318
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
319
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
320
+ "model.layers.24.self_attn.beacon_k_proj.bias": "model-00003-of-00004.safetensors",
321
+ "model.layers.24.self_attn.beacon_k_proj.weight": "model-00003-of-00004.safetensors",
322
+ "model.layers.24.self_attn.beacon_q_proj.bias": "model-00003-of-00004.safetensors",
323
+ "model.layers.24.self_attn.beacon_q_proj.weight": "model-00003-of-00004.safetensors",
324
+ "model.layers.24.self_attn.beacon_v_proj.bias": "model-00003-of-00004.safetensors",
325
+ "model.layers.24.self_attn.beacon_v_proj.weight": "model-00003-of-00004.safetensors",
326
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
327
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
328
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
329
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
330
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
331
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
332
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
333
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
334
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
335
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
336
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
337
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
338
+ "model.layers.25.self_attn.beacon_k_proj.bias": "model-00003-of-00004.safetensors",
339
+ "model.layers.25.self_attn.beacon_k_proj.weight": "model-00003-of-00004.safetensors",
340
+ "model.layers.25.self_attn.beacon_q_proj.bias": "model-00003-of-00004.safetensors",
341
+ "model.layers.25.self_attn.beacon_q_proj.weight": "model-00003-of-00004.safetensors",
342
+ "model.layers.25.self_attn.beacon_v_proj.bias": "model-00003-of-00004.safetensors",
343
+ "model.layers.25.self_attn.beacon_v_proj.weight": "model-00003-of-00004.safetensors",
344
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
345
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
346
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
347
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
348
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
349
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
350
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
351
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
352
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
353
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
354
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
355
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
356
+ "model.layers.26.self_attn.beacon_k_proj.bias": "model-00003-of-00004.safetensors",
357
+ "model.layers.26.self_attn.beacon_k_proj.weight": "model-00003-of-00004.safetensors",
358
+ "model.layers.26.self_attn.beacon_q_proj.bias": "model-00003-of-00004.safetensors",
359
+ "model.layers.26.self_attn.beacon_q_proj.weight": "model-00003-of-00004.safetensors",
360
+ "model.layers.26.self_attn.beacon_v_proj.bias": "model-00003-of-00004.safetensors",
361
+ "model.layers.26.self_attn.beacon_v_proj.weight": "model-00003-of-00004.safetensors",
362
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
363
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
364
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
365
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
366
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
367
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
368
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
369
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00004.safetensors",
370
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
371
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
372
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
373
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
374
+ "model.layers.27.self_attn.beacon_k_proj.bias": "model-00003-of-00004.safetensors",
375
+ "model.layers.27.self_attn.beacon_k_proj.weight": "model-00003-of-00004.safetensors",
376
+ "model.layers.27.self_attn.beacon_q_proj.bias": "model-00003-of-00004.safetensors",
377
+ "model.layers.27.self_attn.beacon_q_proj.weight": "model-00003-of-00004.safetensors",
378
+ "model.layers.27.self_attn.beacon_v_proj.bias": "model-00003-of-00004.safetensors",
379
+ "model.layers.27.self_attn.beacon_v_proj.weight": "model-00003-of-00004.safetensors",
380
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
381
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
382
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
383
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
384
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
385
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
386
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
387
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
388
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
389
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
390
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
391
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
392
+ "model.layers.3.self_attn.beacon_k_proj.bias": "model-00001-of-00004.safetensors",
393
+ "model.layers.3.self_attn.beacon_k_proj.weight": "model-00001-of-00004.safetensors",
394
+ "model.layers.3.self_attn.beacon_q_proj.bias": "model-00001-of-00004.safetensors",
395
+ "model.layers.3.self_attn.beacon_q_proj.weight": "model-00001-of-00004.safetensors",
396
+ "model.layers.3.self_attn.beacon_v_proj.bias": "model-00001-of-00004.safetensors",
397
+ "model.layers.3.self_attn.beacon_v_proj.weight": "model-00001-of-00004.safetensors",
398
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
399
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
400
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
401
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
402
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
403
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
404
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
405
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
406
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
407
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
408
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
409
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
410
+ "model.layers.4.self_attn.beacon_k_proj.bias": "model-00001-of-00004.safetensors",
411
+ "model.layers.4.self_attn.beacon_k_proj.weight": "model-00001-of-00004.safetensors",
412
+ "model.layers.4.self_attn.beacon_q_proj.bias": "model-00001-of-00004.safetensors",
413
+ "model.layers.4.self_attn.beacon_q_proj.weight": "model-00001-of-00004.safetensors",
414
+ "model.layers.4.self_attn.beacon_v_proj.bias": "model-00001-of-00004.safetensors",
415
+ "model.layers.4.self_attn.beacon_v_proj.weight": "model-00001-of-00004.safetensors",
416
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
417
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
418
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
419
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
420
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
421
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
422
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
423
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
424
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
425
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
426
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
427
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
428
+ "model.layers.5.self_attn.beacon_k_proj.bias": "model-00001-of-00004.safetensors",
429
+ "model.layers.5.self_attn.beacon_k_proj.weight": "model-00001-of-00004.safetensors",
430
+ "model.layers.5.self_attn.beacon_q_proj.bias": "model-00001-of-00004.safetensors",
431
+ "model.layers.5.self_attn.beacon_q_proj.weight": "model-00001-of-00004.safetensors",
432
+ "model.layers.5.self_attn.beacon_v_proj.bias": "model-00001-of-00004.safetensors",
433
+ "model.layers.5.self_attn.beacon_v_proj.weight": "model-00001-of-00004.safetensors",
434
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
435
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
436
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
437
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
438
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
439
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
440
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
441
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
442
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
443
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
444
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
445
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
446
+ "model.layers.6.self_attn.beacon_k_proj.bias": "model-00001-of-00004.safetensors",
447
+ "model.layers.6.self_attn.beacon_k_proj.weight": "model-00001-of-00004.safetensors",
448
+ "model.layers.6.self_attn.beacon_q_proj.bias": "model-00001-of-00004.safetensors",
449
+ "model.layers.6.self_attn.beacon_q_proj.weight": "model-00001-of-00004.safetensors",
450
+ "model.layers.6.self_attn.beacon_v_proj.bias": "model-00001-of-00004.safetensors",
451
+ "model.layers.6.self_attn.beacon_v_proj.weight": "model-00001-of-00004.safetensors",
452
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
453
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
454
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
455
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
456
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
457
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
458
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
459
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
460
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
461
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
462
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
463
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
464
+ "model.layers.7.self_attn.beacon_k_proj.bias": "model-00001-of-00004.safetensors",
465
+ "model.layers.7.self_attn.beacon_k_proj.weight": "model-00001-of-00004.safetensors",
466
+ "model.layers.7.self_attn.beacon_q_proj.bias": "model-00001-of-00004.safetensors",
467
+ "model.layers.7.self_attn.beacon_q_proj.weight": "model-00001-of-00004.safetensors",
468
+ "model.layers.7.self_attn.beacon_v_proj.bias": "model-00001-of-00004.safetensors",
469
+ "model.layers.7.self_attn.beacon_v_proj.weight": "model-00001-of-00004.safetensors",
470
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
471
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
472
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
473
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
474
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
475
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
476
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
477
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
478
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
479
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
480
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
481
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
482
+ "model.layers.8.self_attn.beacon_k_proj.bias": "model-00002-of-00004.safetensors",
483
+ "model.layers.8.self_attn.beacon_k_proj.weight": "model-00002-of-00004.safetensors",
484
+ "model.layers.8.self_attn.beacon_q_proj.bias": "model-00002-of-00004.safetensors",
485
+ "model.layers.8.self_attn.beacon_q_proj.weight": "model-00002-of-00004.safetensors",
486
+ "model.layers.8.self_attn.beacon_v_proj.bias": "model-00002-of-00004.safetensors",
487
+ "model.layers.8.self_attn.beacon_v_proj.weight": "model-00002-of-00004.safetensors",
488
+ "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
489
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
490
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
491
+ "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
492
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
493
+ "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
494
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
495
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
496
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
497
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
498
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
499
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
500
+ "model.layers.9.self_attn.beacon_k_proj.bias": "model-00002-of-00004.safetensors",
501
+ "model.layers.9.self_attn.beacon_k_proj.weight": "model-00002-of-00004.safetensors",
502
+ "model.layers.9.self_attn.beacon_q_proj.bias": "model-00002-of-00004.safetensors",
503
+ "model.layers.9.self_attn.beacon_q_proj.weight": "model-00002-of-00004.safetensors",
504
+ "model.layers.9.self_attn.beacon_v_proj.bias": "model-00002-of-00004.safetensors",
505
+ "model.layers.9.self_attn.beacon_v_proj.weight": "model-00002-of-00004.safetensors",
506
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
507
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
508
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
509
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
510
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
511
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
512
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
513
+ "model.norm.weight": "model-00004-of-00004.safetensors"
514
+ }
515
+ }
modeling_beacon.py ADDED
@@ -0,0 +1,1108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import time
4
+ import numpy as np
5
+ import torch.distributed as dist
6
+ from transformers.utils import logging
7
+ from transformers import AutoTokenizer
8
+ from itertools import cycle
9
+ from typing import List
10
+
11
+ logger = logging.get_logger(__name__)
12
+
13
+
14
+ class Memory(torch.nn.Module):
15
+ def __init__(
16
+ self,
17
+ model_config,
18
+ k_seq_dim:int=2,
19
+ v_seq_dim:int=2,
20
+ ):
21
+ """Setup necessary attributes."""
22
+ super().__init__()
23
+
24
+ self.config = model_config
25
+
26
+ # initialize necessary parameters
27
+ self.k_seq_dim = k_seq_dim
28
+ self.v_seq_dim = v_seq_dim
29
+ self.rng = np.random.default_rng(42)
30
+
31
+ self.beacon_token = torch.tensor([self.config.vocab_size])
32
+
33
+ self._post_validation()
34
+ self.reset()
35
+
36
+ def _post_validation(self, verbose=True):
37
+ assert self.config.beacon_window >= self.config.beacon_stride, f"Make sure the beacon_window {self.config.beacon_window} >= beacon_stride {self.config.beacon_stride}!"
38
+ for ratio in self.config.beacon_ratio:
39
+ assert ratio >= 0, f"Make sure all beacon ratios are greater than or equal to 0, found {self.config.beacon_ratio}!"
40
+ assert self.config.beacon_attn in ["segmentation", "step-expansion", "full-coverage"], f"beacon_attn {self.config.beacon_attn} not implemented!"
41
+ assert self.config.beacon_ratio_mix in ["instance-random", "step-random", "sequence"] or "adapt-" in self.config.beacon_ratio_mix, f"beacon_ratio_mix {self.config.beacon_ratio_mix} not implemented!"
42
+ # assert self.config.beacon_pos in ["append", "interleave"], f"beacon_pos {self.config.beacon_pos} not implemented!"
43
+ if self.config.beacon_pos == "interleave":
44
+ assert self.config.beacon_window == self.config.beacon_stride, f"Make sure the beacon_window equals to beacon_stride when using interleaving mode."
45
+ if self.config.beacon_parallel_window > 1:
46
+ assert self.config._attn_implementation != "flash_attention_2", f"Currently parallel window does not support flash_attention_2!"
47
+
48
+ self._cpu = torch.device("cpu")
49
+
50
+ if verbose:
51
+ info = f"applying activation beacon on {self.config.beacon_param} (the beacon embedding is initialized from {'bos' if self.config.beacon_embed_init == 'bos' else 'eos'} embedding, the beacon tokens are positioned with '{self.config.beacon_pos}' method), with window size {self.config.beacon_window}, stride {self.config.beacon_stride}, {self.config.beacon_attn} attention{' (attending to previous beacons)' if self.config.beacon_attend_prev else ' (no attending to previous beacons)'}, sink size {self.config.beacon_sink_size}, compression ratio {self.config.beacon_ratio} (mixed by {self.config.beacon_ratio_mix})..."
52
+ logger.info(info)
53
+
54
+ def set(self, verbose=True, **kwargs):
55
+ """
56
+ Set attributes out of the constructor.
57
+ """
58
+ for k, v in kwargs.items():
59
+ setattr(self.config, k, v)
60
+ self._post_validation(verbose=verbose)
61
+
62
+ def reset(self):
63
+ """Initialize attributes for a new sequence."""
64
+ # the cursor pointing to the start of the current window
65
+ self.start_idx = 0
66
+ # the cursor pointing to the end of the current window
67
+ self.end_idx = 0
68
+ # the beacon sizes of all strides
69
+ self.all_beacon_sizes = []
70
+ # the loss per batch
71
+ self.batch_loss = None
72
+ # the valid token number per batch
73
+ self.valid_token_num = None
74
+ # the step index for processing the input_ids
75
+ self.step_idx = 0
76
+ # used in set_compression_ratio
77
+ self.compression_ratio = None
78
+ # the previous inputs is a full window or not, defaults to True
79
+ self.is_full_window = True
80
+ # the number of raw activations to preserve in update_memory (only useful when beacon_stride < beacon_window)
81
+ self.raw_size_to_cache = 0
82
+
83
+ # the number of tokens in previous stride that should be compressed by the upcoming beacon
84
+ self.interleave_remainder = 0
85
+ # compression ratio for the unfinished window
86
+ self.interleave_compression_ratio = None
87
+ self.beacon_indices = None
88
+
89
+ self.all_input_ids = None
90
+ self.all_attention_mask = None
91
+ self.all_labels = None
92
+
93
+ # NOTE: will be reset in prepare()
94
+ self.beacon_skip_first = None
95
+ self.beacon_skip_last = None
96
+
97
+ # the raw activations of recent tokens
98
+ self.raw_activations = [(None, None) for _ in range(self.config.num_hidden_layers)]
99
+ # the attention sink activations
100
+ self.sink_activations = [(None, None) for _ in range(self.config.num_hidden_layers)]
101
+ # the beacon activations
102
+ self.beacon_activations = [(None, None) for _ in range(self.config.num_hidden_layers)]
103
+
104
+ @property
105
+ def all_sequence_length(self):
106
+ if self.all_input_ids is None:
107
+ return 0
108
+ else:
109
+ return self.all_input_ids.shape[1]
110
+
111
+ @property
112
+ def batch_size(self):
113
+ if self.all_input_ids is None:
114
+ return 0
115
+ else:
116
+ return self.all_input_ids.shape[0]
117
+
118
+ @property
119
+ def finish(self):
120
+ is_finish = self.end_idx == self.all_sequence_length
121
+ return is_finish
122
+
123
+ @property
124
+ def dtype(self):
125
+ return self.config.torch_dtype
126
+
127
+ @property
128
+ def min_value(self):
129
+ return torch.finfo(self.dtype).min
130
+
131
+ @property
132
+ def max_position_embeddings(self):
133
+ max_position_embeddings = self.config.max_position_embeddings
134
+ if getattr(self.config, "rope_scaling", None) is not None:
135
+ scaling_factor = self.config.rope_scaling["factor"]
136
+ max_position_embeddings = max_position_embeddings * scaling_factor
137
+ return max_position_embeddings
138
+
139
+ @property
140
+ def beacon_window(self):
141
+ if (
142
+ self.beacon_skip_last is not None
143
+ and self.start_idx < self.beacon_skip_last
144
+ and self.start_idx + self.config.beacon_window > self.beacon_skip_last
145
+ ):
146
+ return self.beacon_skip_last - self.start_idx
147
+ else:
148
+ return self.config.beacon_window
149
+
150
+ @property
151
+ def beacon_stride(self):
152
+ if (
153
+ self.beacon_skip_last is not None
154
+ and self.start_idx < self.beacon_skip_last
155
+ and self.start_idx + self.config.beacon_window > self.beacon_skip_last
156
+ ):
157
+ return self.beacon_skip_last - self.start_idx
158
+ else:
159
+ return self.config.beacon_stride
160
+
161
+ def get_memory_size(self):
162
+ """
163
+ Sink memory size, beacon memory size and raw memory size.
164
+ """
165
+ sink_memory_size = 0
166
+ beacon_memory_size = 0
167
+ raw_memory_size = 0
168
+ if self.sink_activations[0][0] is not None:
169
+ sink_memory_size += self.sink_activations[0][0].shape[self.k_seq_dim]
170
+ if self.beacon_activations[0][0] is not None:
171
+ beacon_memory_size += self.beacon_activations[0][0].shape[self.k_seq_dim]
172
+ if self.raw_activations[0][0] is not None:
173
+ raw_memory_size += self.raw_activations[0][0].shape[self.k_seq_dim]
174
+ return sink_memory_size, beacon_memory_size, raw_memory_size
175
+
176
+ def prepare(self, input_ids, attention_mask, labels, skip_first=None, skip_last=None):
177
+ """
178
+ Prepare inputs for the model. These inputs belong to the same sequence.
179
+ """
180
+ # assert input_ids.shape[0] == 1, "Make sure the batch size is 1!"
181
+ # assert attention_mask is None or (attention_mask == 1).all(), "Make sure there is no padding!"
182
+
183
+ self._device = input_ids.device
184
+
185
+ # accumulate input_ids
186
+ if self.all_input_ids is None:
187
+ self.all_input_ids = input_ids.cpu()
188
+ else:
189
+ self.all_input_ids = torch.cat([self.all_input_ids, input_ids.cpu()], dim=1)
190
+
191
+ # accumulate attention_mask
192
+ if attention_mask is None:
193
+ attention_mask = torch.ones_like(input_ids, device=torch.device("cpu"))
194
+ if self.all_attention_mask is None:
195
+ self.all_attention_mask = attention_mask.cpu()
196
+ else:
197
+ self.all_attention_mask = torch.cat([self.all_attention_mask, attention_mask.cpu()], dim=1)
198
+
199
+ # accumulate labels if exisits
200
+ if labels is not None:
201
+ # rotate labels in advance so that the loss of the last token is not ignored in every window
202
+ labels = torch.cat([labels[:, 1:].cpu(), torch.tensor([-100]).expand(labels.shape[0], 1)], dim=1)
203
+ if self.all_labels is None:
204
+ self.all_labels = labels.cpu()
205
+ else:
206
+ self.all_labels = torch.cat([self.all_labels, labels], dim=1)
207
+ assert self.all_input_ids.shape[1] == self.all_labels.shape[1], f"Found inconsistent all_input_ids {self.all_input_ids.shape} and all_labels {self.all_labels.shape}!"
208
+
209
+ # how many tokens to skip at the beginning of the sequence? (They will be packed in a single chunk and processed by the model, after which their activations will be cached in sink_activations.)
210
+ if skip_first is not None:
211
+ assert self.config.beacon_parallel_window == 1, f"Make sure the parallel window is set to 1 when using beacon_skip!"
212
+ assert self.config.beacon_window == self.config.beacon_stride, f"Make sure the beacon_window equals to beacon_stride when using beacon_skip."
213
+ assert self.config.beacon_sink_size == 0, f"Make sure the beacon_sink_size is set to 0 when using beacon_skip!"
214
+ # stop compression after how many tokens
215
+ if skip_last is not None:
216
+ skip_first = skip_first if skip_first is not None else 0
217
+ # assert (skip_last - skip_first) % self.config.beacon_window == 0, f"skip_last ({skip_last}) - skip_first ({skip_first}) = {skip_last - skip_first} is not divisible by window size {self.config.beacon_window}"
218
+ assert self.config.beacon_sink_size == 0, "Make sure the beacon_sink_size is zero when using skip_last!"
219
+ self.beacon_skip_first = skip_first
220
+ self.beacon_skip_last = skip_last
221
+
222
+ def set_compression_ratio(self, start_idx, end_idx):
223
+ """Choose a condensing ratio from self.config.beacon_ratio"""
224
+ def filter_ratio(ratios, stride):
225
+ valid_ratios = []
226
+ for ratio in ratios:
227
+ # stride must be bigger than condensing ratio because we there must be at least one beacon
228
+ if stride < ratio:
229
+ continue
230
+ # the stride must be evenly divisible by condensing ratio
231
+ if ratio > 0 and (stride % ratio) != 0:
232
+ continue
233
+ # when training, ratio=0 is valid if previous windows contain beacon or later windows contain beacon
234
+ if ratio == 0 and self.training:
235
+ previous_has_zero = -1 in self.all_beacon_sizes
236
+ following_has_nonzero = (start_idx + stride + self.beacon_window) <= self.all_sequence_length
237
+ if previous_has_zero or (not following_has_nonzero):
238
+ continue
239
+ valid_ratios.append(ratio)
240
+ assert len(valid_ratios), f"Cannot find valid condensing ratio (among {ratios}) for stride {stride}!"
241
+ return valid_ratios
242
+
243
+ def get_max_length(ratios):
244
+ max_lengths = []
245
+ for compression_ratio in ratios:
246
+ if compression_ratio > 0:
247
+ # NOTE: here we must use the scaled position embeddings
248
+ max_lengths.append((self.max_position_embeddings - self.beacon_window) * compression_ratio + self.beacon_window)
249
+ else:
250
+ max_lengths.append(self.max_position_embeddings)
251
+ return max_lengths
252
+
253
+ if len(self.config.beacon_ratio) == 1:
254
+ return self.config.beacon_ratio[0]
255
+
256
+ ratio_mix = self.config.beacon_ratio_mix
257
+
258
+ beacon_ratio = filter_ratio(self.config.beacon_ratio, self.beacon_stride)
259
+
260
+ if ratio_mix == "instance-random":
261
+ if self.compression_ratio is None:
262
+ beacon_ratio = self.rng.choice(beacon_ratio).tolist()
263
+ self.compression_ratio = beacon_ratio
264
+ else:
265
+ beacon_ratio = self.compression_ratio
266
+
267
+ elif ratio_mix == "step-random":
268
+ beacon_ratio = self.rng.choice(beacon_ratio).tolist()
269
+
270
+ elif ratio_mix == "sequence":
271
+ if self.compression_ratio is None:
272
+ self.compression_ratio = cycle(beacon_ratio)
273
+ beacon_ratio = next(self.compression_ratio)
274
+
275
+ elif "adapt" in ratio_mix:
276
+ if self.compression_ratio is None:
277
+ future_length = int(ratio_mix.split("-")[1])
278
+ sequence_length = self.all_input_ids.shape[1] + future_length
279
+ max_lengths = get_max_length(beacon_ratio)
280
+ # ascendingly sort the max lengths
281
+ valid_max_lengths_and_indices = [x for x in enumerate(max_lengths) if x[1] >= sequence_length]
282
+ if len(valid_max_lengths_and_indices):
283
+ minimum_length_index = min(valid_max_lengths_and_indices, key=lambda x: x[1])[0]
284
+ # use the minimal possible length for this sequence (the smallest fold ratio)
285
+ beacon_ratio = beacon_ratio[minimum_length_index]
286
+ else:
287
+ beacon_ratio = max(beacon_ratio)
288
+ # logger.warning(f"Failed to find valid fold window and size for sequence length {sequence_length}, as the maximum theoretical length is {max(max_lengths)}. Fall back to use the maximum one: {beacon_ratio}.")
289
+ self.compression_ratio = beacon_ratio
290
+ else:
291
+ beacon_ratio = self.compression_ratio
292
+
293
+ return beacon_ratio
294
+
295
+ def step(self):
296
+ # parallel does not support stride < window
297
+ # parallel does not support non-compression
298
+ # the input_ids is not long enough for parallel
299
+ if (
300
+ self.config.beacon_parallel_window > 1
301
+ and self.config.beacon_stride == self.config.beacon_window
302
+ and 0 not in self.config.beacon_ratio
303
+ and self.all_input_ids[:, self.end_idx:].shape[1] >= self.config.beacon_parallel_window * self.config.beacon_window
304
+ ):
305
+ input_ids_list = []
306
+ attention_mask_list = []
307
+ position_ids_list = []
308
+ labels_list = []
309
+
310
+ beacon_size_list = []
311
+ beacon_indices_list = []
312
+
313
+ for i in range(self.config.beacon_parallel_window):
314
+ if i == 0:
315
+ _input_ids, _attention_mask, _position_ids, _past_key_values, _labels = self._step()
316
+ else:
317
+ _input_ids, _attention_mask, _position_ids, _past_key_values, _labels = self._step(ignore_memory=True)
318
+
319
+ input_ids_list.append(_input_ids)
320
+ attention_mask_list.append(_attention_mask)
321
+ position_ids_list.append(_position_ids)
322
+ labels_list.append(_labels)
323
+ beacon_size_list.append(_past_key_values[0][2])
324
+ beacon_indices_list.append(_past_key_values[0][3])
325
+
326
+ if i == 0:
327
+ past_key_values = _past_key_values
328
+ if past_key_values[0][0] is None:
329
+ mem_size = 0
330
+ else:
331
+ mem_size = past_key_values[0][0].shape[self.k_seq_dim]
332
+
333
+ else:
334
+ # no memory
335
+ assert _past_key_values[0][0] is None
336
+
337
+ batch_size = self.all_input_ids.shape[0]
338
+ # NOTE: we do not need to repliace beacon tokens for the last window
339
+ seq_len = sum(x.shape[1] for x in input_ids_list) + sum(beacon_size_list) - beacon_size_list[-1]
340
+
341
+ input_ids = _input_ids.new_zeros((batch_size, seq_len)) + self.beacon_token.to(_input_ids.device)
342
+ # all 0
343
+ attention_mask = _attention_mask.new_zeros((batch_size, 1, seq_len, mem_size + seq_len)) + self.min_value
344
+ position_ids = torch.arange(mem_size + seq_len, device=self._device).expand(batch_size, mem_size + seq_len)
345
+ # 2 indicates the beacon token is used for replication
346
+ beacon_indices = beacon_indices_list[0].new_zeros(seq_len) + 2
347
+ if _labels is not None:
348
+ # -100 because no loss on beacon tokens
349
+ labels = _labels.new_zeros((batch_size, seq_len)) - 100
350
+ else:
351
+ labels = None
352
+
353
+ start_idx = 0
354
+ position_offset = mem_size
355
+ for i in range(self.config.beacon_parallel_window):
356
+ beacon_size = beacon_size_list[i]
357
+
358
+ # populate input_ids
359
+ _input_ids = input_ids_list[i]
360
+ cur_seq_len = _input_ids.shape[1]
361
+ input_ids[:, start_idx: start_idx + cur_seq_len] = _input_ids
362
+
363
+ # populate attention_mask and position_ids
364
+ _attention_mask = attention_mask_list[i]
365
+ _position_ids = position_ids_list[i]
366
+ # the attention mask in the first window contains the mask for memory, which is redundant here
367
+ if i == 0:
368
+ _attention_mask = _attention_mask[:, :, :, mem_size:]
369
+ _position_ids = _position_ids[:, mem_size:] - mem_size
370
+
371
+ attention_mask[:, :, start_idx: start_idx + cur_seq_len, mem_size + start_idx: mem_size + start_idx + cur_seq_len] = _attention_mask
372
+ position_ids[:, mem_size + start_idx: mem_size + start_idx + cur_seq_len] = _position_ids + position_offset
373
+
374
+ # populate beacon_indices
375
+ _beacon_indices = beacon_indices_list[i]
376
+ beacon_indices[start_idx: start_idx + cur_seq_len] = _beacon_indices
377
+
378
+ # populate labels
379
+ if labels is not None:
380
+ # populate labels
381
+ _labels = labels_list[i]
382
+ labels[:, start_idx: start_idx + cur_seq_len] = _labels
383
+
384
+ # NOTE: when there is sink activations, we need to bias the position_ids for the first window
385
+ if i == 0 and self.config.beacon_sink_size > 0 and self.sink_activations[0][0] is None:
386
+ position_offset += 1
387
+
388
+ # modify the attention and position for replicated beacon tokens
389
+ if i != self.config.beacon_parallel_window - 1:
390
+ replicate_beacon_row_start = start_idx + cur_seq_len
391
+ replicate_beacon_col_start = mem_size + start_idx + cur_seq_len
392
+ # NOTE: any attention mask is okay for replicated beacon tokens, but for convenience we use the causal mask
393
+ attention_mask[:, :, replicate_beacon_row_start: replicate_beacon_row_start + beacon_size, replicate_beacon_col_start: replicate_beacon_col_start + beacon_size] = _attention_mask.new_full((beacon_size, beacon_size), self.min_value).triu(1)
394
+ # NOTE: all future tokens can attend to the replicated beacon tokens
395
+ attention_mask[:, :, replicate_beacon_row_start + beacon_size:, replicate_beacon_col_start: replicate_beacon_col_start + beacon_size] = 0
396
+ # NOTE: the position of replicated beacon tokens start from 0
397
+ position_ids[:, mem_size + start_idx + cur_seq_len: mem_size + start_idx + cur_seq_len + beacon_size] = torch.arange(position_offset, position_offset + beacon_size, device=_input_ids.device)[None:]
398
+
399
+ start_idx += cur_seq_len + beacon_size
400
+ position_offset += beacon_size
401
+
402
+ # the memory is visible to all subsequent tokens
403
+ attention_mask[:, :, :, :max(mem_size, self.config.beacon_sink_size)] = 0
404
+
405
+ # NOTE: modify beacon_indices
406
+ for i, (key, value, _, _) in enumerate(past_key_values):
407
+ past_key_values[i] = (key, value, sum(beacon_size_list), beacon_indices)
408
+
409
+ # NOTE: update _beacon_indices so that the next-token logits can be properly sliced out in self.output()
410
+ self.beacon_indices = beacon_indices
411
+
412
+ return input_ids, attention_mask, position_ids, past_key_values, labels
413
+
414
+ else:
415
+ return self._step()
416
+
417
+ def _step(self, ignore_memory=False):
418
+ """
419
+ Yield inputs for the current sliding window, including the input_ids, attention_mask, position_ids, and past_key_values.
420
+ """
421
+ #============================================#
422
+ # Check whether the inputs fulfills a window.
423
+ #============================================#
424
+
425
+ # the starting position of the current window w.r.t. the start of the current input sequence
426
+ start_idx = self.start_idx
427
+ # the end position of the current window w.r.t. the start of the current input sequence
428
+ end_idx = start_idx + self.beacon_window
429
+ # indicates if the current window is completely filled by raw activations and new tokens
430
+ # we only append beacon tokens for full windows
431
+ if end_idx > self.all_sequence_length:
432
+ # the input is shorter than the initial window size
433
+ end_idx = self.all_sequence_length
434
+ is_full_window = False
435
+ else:
436
+ is_full_window = True
437
+
438
+ # NOTE: in training, the entire sequence is input to the model at once
439
+ # In the last window, we do not need to append beacons because they will not be used at all
440
+ if self.training and end_idx == self.all_sequence_length:
441
+ next_start_idx = start_idx
442
+ is_full_window = False
443
+ raw_size_to_cache = -1
444
+ beacon_size = 0
445
+ compression_ratio = -1
446
+
447
+ # NOTE: we do not compress the beacon_skip_first tokens at the beginning of the sequence
448
+ elif self.step_idx == 0 and self.beacon_skip_first is not None:
449
+ end_idx = start_idx + self.beacon_skip_first
450
+ assert end_idx <= self.all_sequence_length
451
+ next_start_idx = end_idx
452
+ is_full_window = True
453
+ raw_size_to_cache = -1
454
+ beacon_size = 0
455
+ compression_ratio = -1
456
+
457
+ # NOTE: we do not compress tokens after beacon_skip_last tokens
458
+ elif self.beacon_skip_last is not None and start_idx >= self.beacon_skip_last:
459
+ end_idx = min(start_idx + self.beacon_window, self.all_sequence_length)
460
+ next_start_idx = end_idx
461
+ is_full_window = False
462
+ raw_size_to_cache = -1
463
+ beacon_size = 0
464
+ compression_ratio = -1
465
+
466
+ else:
467
+ #============================================#
468
+ # Set compression ratio
469
+ #============================================#
470
+ if self.config.beacon_pos == "append":
471
+ if is_full_window:
472
+ # determine compression ratio for the current window
473
+ beacon_stride = self.beacon_stride
474
+ compression_ratio = self.set_compression_ratio(start_idx=start_idx, end_idx=end_idx)
475
+
476
+ if compression_ratio > 0:
477
+ # the stride must be evenly divisible by compression_ratio
478
+ beacon_size = beacon_stride // compression_ratio
479
+ else:
480
+ # the raw activations are used as beacon activations
481
+ beacon_size = -1
482
+
483
+ # forward start_idx and end_idx
484
+ next_start_idx = start_idx + beacon_stride
485
+ # how many raw activations to save
486
+ raw_size_to_cache = end_idx - next_start_idx
487
+ else:
488
+ # no stride because the sequence has finished
489
+ next_start_idx = start_idx
490
+ # cache all raw activations
491
+ raw_size_to_cache = -1
492
+ beacon_size = 0
493
+ compression_ratio = 0
494
+
495
+ elif self.config.beacon_pos == "interleave":
496
+ # the number of raw tokens in the input_ids
497
+ input_size = end_idx - self.end_idx
498
+ # set compression ratio once the previous window has finished, otherwise, reuse the interleave_compression_ratio if the input belongs to an unfinished window
499
+ if self.is_full_window:
500
+ compression_ratio = self.set_compression_ratio(start_idx=start_idx, end_idx=end_idx)
501
+ self.interleave_compression_ratio = compression_ratio
502
+ else:
503
+ compression_ratio = self.interleave_compression_ratio
504
+
505
+ # the beacon size is non-zero even if the window is not full
506
+ if compression_ratio > 0:
507
+ # this number of beacon tokens will be inserted among the raw tokens
508
+ beacon_size = (input_size + self.interleave_remainder) // compression_ratio
509
+ else:
510
+ # the raw activations are used as beacon activations
511
+ beacon_size = -1
512
+
513
+ if is_full_window:
514
+ # move forward one window
515
+ next_start_idx = start_idx + self.beacon_stride
516
+ # no save raw activations
517
+ raw_size_to_cache = 0
518
+ else:
519
+ # no stride because the sequence has not finished
520
+ next_start_idx = start_idx
521
+ # cache all recent raw activations to be used in the next window
522
+ raw_size_to_cache = -1
523
+
524
+ #============================================#
525
+ # Slice out input_ids (raw tokens in the current window)
526
+ #============================================#
527
+ input_ids = self.all_input_ids[:, self.end_idx: end_idx].to(self._device)
528
+ attention_mask = self.all_attention_mask[:, self.end_idx: end_idx].to(self._device)
529
+ if self.all_labels is not None:
530
+ labels = self.all_labels[:, self.end_idx: end_idx].to(self._device)
531
+ else:
532
+ labels = None
533
+ batch_size = input_ids.shape[0]
534
+
535
+ #============================================#
536
+ # Insert beacon tokens if necessary.
537
+ #============================================#
538
+ # t1 = time.time()
539
+
540
+ if self.config.beacon_pos == "append":
541
+ # append beacons if necessary
542
+ if is_full_window and beacon_size > 0:
543
+ input_ids = torch.cat([input_ids, self.beacon_token.expand(batch_size, beacon_size).to(input_ids.device, dtype=input_ids.dtype)], dim=1)
544
+ # NOTE: prepend 1 to attention_mask because we have past_key_values
545
+ attention_mask = torch.cat([attention_mask, attention_mask.new_ones(batch_size, beacon_size)], dim=1)
546
+ if labels is not None:
547
+ labels = torch.cat([labels, labels.new_zeros(batch_size, beacon_size) - 100], dim=1)
548
+
549
+ elif self.config.beacon_pos == "interleave":
550
+ input_len = input_ids.shape[1]
551
+ if beacon_size > 0:
552
+ # insert beacon tokens in between raw tokens
553
+ input_ids_with_beacons = input_ids.new_full((input_ids.shape[0], input_len + beacon_size), self.beacon_token.item())
554
+ raw_token_indices = torch.arange(input_ids_with_beacons.shape[1], device=input_ids.device)
555
+ interleave_start_idx = compression_ratio - self.interleave_remainder
556
+ raw_token_indices = raw_token_indices[raw_token_indices % (compression_ratio + 1) != interleave_start_idx].unsqueeze(0).expand_as(input_ids)
557
+ input_ids_with_beacons = input_ids_with_beacons.scatter(dim=1, index=raw_token_indices, src=input_ids)
558
+ input_ids = input_ids_with_beacons
559
+ # attention mask
560
+ attention_mask_with_beacons = attention_mask.new_full((attention_mask.shape[0], attention_mask.shape[1] + beacon_size), 1)
561
+ attention_mask_with_beacons = attention_mask_with_beacons.scatter(dim=1, index=raw_token_indices, src=attention_mask)
562
+ attention_mask = attention_mask_with_beacons
563
+ # labels
564
+ if labels is not None:
565
+ labels_with_beacons = labels.new_full((labels.shape[0], labels.shape[1] + beacon_size), -100)
566
+ labels_with_beacons = labels_with_beacons.scatter(dim=1, index=raw_token_indices, src=labels)
567
+ labels = labels_with_beacons
568
+
569
+ if compression_ratio > 0:
570
+ # update the reminder
571
+ self.interleave_remainder = (input_len + self.interleave_remainder) % compression_ratio
572
+
573
+ # NOTE: skip computing loss in the very first window because the beacon tokens will be used in the next window
574
+ if self.training and self.step_idx == 0 and not (self.config.beacon_pos == 'interleave' and self.config.beacon_attn == 'full-coverage'):
575
+ labels[:] = -100
576
+
577
+ # t2 = time.time()
578
+
579
+ #============================================#
580
+ # Prepare beacon_indices for interleave beacon_pos, a boolean mask where True indicates the beacon tokens.
581
+ # The mask is applied on the inputs of the entire window, including the cached activations and the input_ids.
582
+ #============================================#
583
+ beacon_indices = (input_ids[0] == self.beacon_token.item()).long()
584
+ if self.is_full_window:
585
+ self.beacon_indices = torch.tensor([], dtype=torch.long, device=input_ids.device)
586
+ # the beacon_indices always tracks the beacon tokens in both the cached activations and the input_ids
587
+ beacon_indices = torch.cat([self.beacon_indices, beacon_indices])
588
+ # record the beacon_indices for the next window
589
+ self.beacon_indices = beacon_indices
590
+ if is_full_window and beacon_size == -1:
591
+ # NOTE: the first beacon_stride raw tokens serve as beacon tokens
592
+ # we use -1 to indicate these raw tokens, so that the attention mask and position ids will not be modified
593
+ beacon_indices[:self.beacon_stride] = -1
594
+
595
+ # t3 = time.time()
596
+
597
+ #============================================#
598
+ # Prepare past_key_values.
599
+ # beacon_size: how many beacon tokens are there in the input_ids
600
+ # beacon_indices: the boolean mask for the entire window where True indicates the beacon tokens (for append, the beacon_indices corresponds to input_ids, while for 'interleave', the beacon_indices corresponds to the entire window including both the input_ids and the cached activations)
601
+ #============================================#
602
+ past_key_values = []
603
+ for layer_idx in range(self.config.num_hidden_layers):
604
+ if ignore_memory:
605
+ key, value = None, None
606
+ else:
607
+ sink_key, sink_value = self.sink_activations[layer_idx]
608
+ beacon_key, beacon_value = self.beacon_activations[layer_idx]
609
+ raw_key, raw_value = self.raw_activations[layer_idx]
610
+
611
+ key = cat_tensor([
612
+ sink_key, beacon_key, raw_key,
613
+ ], dim=self.k_seq_dim)
614
+ value = cat_tensor([
615
+ sink_value, beacon_value, raw_value,
616
+ ], dim=self.v_seq_dim)
617
+
618
+ layer_past_key_values = (key, value, beacon_size, beacon_indices)
619
+ past_key_values.append(layer_past_key_values)
620
+
621
+ # t4 = time.time()
622
+
623
+ #============================================#
624
+ # Prepare attention_mask and position_ids.
625
+ #============================================#
626
+ first_key = past_key_values[0][0]
627
+ mem_size = first_key.shape[self.k_seq_dim] if first_key is not None else 0
628
+ if mem_size > 0:
629
+ attention_mask = torch.cat([attention_mask.new_ones(batch_size, mem_size), attention_mask], dim=1)
630
+
631
+ input_length = input_ids.shape[1]
632
+ position_ids = torch.arange(attention_mask.shape[-1], dtype=torch.long, device=self._device).repeat(batch_size, 1)
633
+
634
+ if self.config._attn_implementation == "flash_attention_2":
635
+ assert self.config.beacon_attn == "full-coverage", f"Make sure to set beacon_attn='full-coverage' when using flash attention! Found {self.config.beacon_attn}."
636
+ if 0 in attention_mask:
637
+ pass
638
+ else:
639
+ attention_mask = None
640
+ elif self.config._attn_implementation == "sdpa" and self.config.beacon_pos == "append" and beacon_size <= 0 and (input_length == 1 or mem_size == 0):
641
+ attention_mask = None
642
+ else:
643
+ attention_mask, position_ids = self._make_4d_attention_mask_and_position_ids(
644
+ attention_mask,
645
+ position_ids,
646
+ mem_size,
647
+ beacon_size,
648
+ compression_ratio,
649
+ )
650
+
651
+ # t5 = time.time()
652
+
653
+ # print(f"prepare inputs {t2-t1}, prepare indices {t3-t2}, prepare memory {t4-t3}, prepare attention mask {t5-t4}")
654
+
655
+ #============================================#
656
+ # Update necessary attributes.
657
+ #============================================#
658
+ # keep track of whether the current inputs is a full_window
659
+ self.is_full_window = is_full_window
660
+ # keep track of the raw_size_to_cache
661
+ self.raw_size_to_cache = raw_size_to_cache
662
+ # involked in self.output()
663
+ self.all_beacon_sizes.append(beacon_size)
664
+ # update start_idx and end_idx
665
+ # NOTE: the update of start_idx will influence self.beacon_window and self.beacon_stride in case self.beacon_skip_last is not None
666
+ # Therefore, we must make sure all calls to self.beacon_window and self.beacon_stride happen before the update of start_idx
667
+ self.start_idx = next_start_idx
668
+ self.end_idx = end_idx
669
+ self.step_idx += 1
670
+
671
+ # print(f"start_idx: {start_idx}")
672
+ # print(f"next_start_idx: {next_start_idx}")
673
+ # print(f"beacon_size: {beacon_size}")
674
+ # print(f"raw_size_to_cache: {raw_size_to_cache}")
675
+ # print(f"interleave_remainder:{self.interleave_remainder}")
676
+ # print(f"input_ids: {input_ids}")
677
+ # print(f"beacon_indices: {beacon_indices}")
678
+ # print(f"position_ids: {position_ids}")
679
+ # print(f"attention_mask:\n{attention_mask == 0}")
680
+ # x = input()
681
+ # if x == "s":
682
+ # return
683
+
684
+ return input_ids, attention_mask, position_ids, past_key_values, labels
685
+
686
+ def update_memory(self, past_key_values):
687
+ """
688
+ Accumulate beacon activations and raw activations.
689
+ """
690
+ for layer_idx, (key, value, beacon_size, beacon_indices) in enumerate(past_key_values):
691
+ # NOTE: the past_key_values are incrementally returned (only the new keys and values are returned)
692
+ previous_raw_key, previous_raw_value = self.raw_activations[layer_idx]
693
+
694
+ if self.beacon_skip_first is not None and self.sink_activations[layer_idx][0] is None:
695
+ assert key.shape[self.k_seq_dim] == self.beacon_skip_first
696
+ assert value.shape[self.k_seq_dim] == self.beacon_skip_first
697
+ self.sink_activations[layer_idx] = [
698
+ key,
699
+ value,
700
+ ]
701
+ # NOTE: no need to update raw activations and beacon activations as all activations are kept as sink activations
702
+ continue
703
+
704
+ if self.beacon_activations[layer_idx][0] is None and self.config.beacon_sink_size > 0:
705
+ # save the sink activations
706
+ # NOTE: we do not slice the key/value activations, which may cause duplication when beacon_ratio=-1 for the first window, but it's okay
707
+ self.sink_activations[layer_idx] = [
708
+ slice_tensor(key, end=self.config.beacon_sink_size, dim=self.k_seq_dim),
709
+ slice_tensor(value, end=self.config.beacon_sink_size, dim=self.v_seq_dim),
710
+ ]
711
+
712
+ if not self.is_full_window:
713
+ # this means the current input does not fulfill a window
714
+ # thus, the key and value are all raw activations, and we accumulate them until the window is fulfilled
715
+ assert self.raw_size_to_cache == -1
716
+ raw_key = cat_tensor([
717
+ previous_raw_key,
718
+ key
719
+ ], dim=self.k_seq_dim)
720
+ raw_value = cat_tensor([
721
+ previous_raw_value,
722
+ value
723
+ ], dim=self.v_seq_dim)
724
+ self.raw_activations[layer_idx] = (raw_key, raw_value)
725
+
726
+ else:
727
+ # NOTE: use the correct previous_beacon_key and value!
728
+ previous_beacon_key, previous_beacon_value = self.beacon_activations[layer_idx]
729
+
730
+ beacon_key, beacon_value, raw_key, raw_value = self._extract_beacon_and_raw_memory(
731
+ key,
732
+ value,
733
+ previous_beacon_key,
734
+ previous_beacon_value,
735
+ previous_raw_key,
736
+ previous_raw_value,
737
+ beacon_indices,
738
+ )
739
+
740
+ self.beacon_activations[layer_idx] = (beacon_key, beacon_value)
741
+ self.raw_activations[layer_idx] = (raw_key, raw_value)
742
+
743
+ def update_loss(self, batch_loss, valid_token_num):
744
+ """
745
+ Accumulate loss for later perplexity computation and backward pass.
746
+ """
747
+ if self.batch_loss is None:
748
+ # NOTE: multiply valid_token_num because batch_loss is divided by it in advance
749
+ self.batch_loss = batch_loss * valid_token_num
750
+ self.valid_token_num = valid_token_num
751
+ else:
752
+ # NOTE: avoid in-place operations, otherwise there will be gradient errors in training
753
+ self.batch_loss = self.batch_loss + batch_loss * valid_token_num
754
+ self.valid_token_num = self.valid_token_num + valid_token_num
755
+
756
+ def output(self, model_outputs):
757
+ """
758
+ Override loss with accumulated loss. Update the next-token logits.
759
+ """
760
+ # override loss
761
+ if self.batch_loss is not None:
762
+ # here the batch_loss is the summation of all token losses in each element
763
+ loss = self.batch_loss.sum() / self.valid_token_num.sum()
764
+
765
+ # NOTE: prevent nan
766
+ batch_loss = self.batch_loss / self.valid_token_num
767
+ if (self.valid_token_num == 0).any():
768
+ batch_loss = batch_loss.masked_fill(self.valid_token_num == 0, 0.)
769
+
770
+ # NOTE: we must use dict to override values, otherwise trainer cannot find loss
771
+ model_outputs["loss"] = loss
772
+ model_outputs["batch_loss"] = batch_loss
773
+
774
+ # override last_hidden_states (used in generation)
775
+ beacon_size = self.all_beacon_sizes[-1]
776
+ # remove logits corresponding to beacon tokens
777
+ if beacon_size > 0:
778
+ logits = model_outputs["logits"]
779
+ beacon_indices = self.beacon_indices[-logits.shape[1]:]
780
+ model_outputs["logits"] = logits[:, beacon_indices == 0]
781
+
782
+ return model_outputs
783
+
784
+ def _make_4d_attention_mask_and_position_ids(
785
+ self,
786
+ attention_mask,
787
+ position_ids,
788
+ mem_size,
789
+ beacon_size,
790
+ compression_ratio,
791
+ ):
792
+ """
793
+ Convert attention_mask into causal 4D attention_mask (batch_size, head_num, query_len, key_len).
794
+ """
795
+ tgt_size = attention_mask.size(-1) - mem_size
796
+ dtype = self.dtype
797
+ min_value = self.min_value
798
+ device = self._device
799
+ batch_size, src_size = attention_mask.size()
800
+
801
+ # square for memory, and lower triangular for input_ids
802
+ causal_mask = torch.full((tgt_size, tgt_size), min_value, device=device, dtype=dtype)
803
+ mask_cond = torch.arange(causal_mask.size(-1), device=device)
804
+ causal_mask.masked_fill_(mask_cond < (mask_cond + 1).view(causal_mask.size(-1), -1), 0)
805
+ causal_mask = torch.cat([torch.zeros(tgt_size, mem_size, dtype=dtype, device=device), causal_mask], dim=-1)
806
+ causal_mask = causal_mask[None, None, ...].expand(batch_size, 1, tgt_size, src_size)
807
+ # 1 for non-padding tokens
808
+ expand_mask = attention_mask[:, None, None, :].expand(batch_size, 1, tgt_size, src_size)
809
+ invert_mask = 1.0 - expand_mask
810
+ invert_mask.masked_fill_(invert_mask.bool(), min_value)
811
+
812
+ attention_mask = causal_mask.masked_fill(invert_mask.bool(), min_value)
813
+
814
+ if self.config.beacon_attn == "step-expansion":
815
+ # each beacon can attend to one more sub-interval than its predecessor
816
+
817
+ if self.config.beacon_pos == "append" and beacon_size > 0:
818
+ window_size = self.beacon_window
819
+ window_size_with_beacon = window_size + beacon_size
820
+ beacon_start_idx = -beacon_size
821
+ # batch_size, head_num, window_size
822
+ reference_attention_mask = attention_mask[..., -beacon_size - 1, -window_size_with_beacon: -beacon_size]
823
+
824
+ # compression_ratio, 2 * compression_ratio, ..., beacon_size * compression_ratio
825
+ beacon_arange = torch.arange(1, beacon_size + 1, device=device) * compression_ratio
826
+ # 0, 1, 2, ..., window_size - 1
827
+ ordinal_arange = torch.arange(window_size, device=device)
828
+ # beacon_size, window_size
829
+ valid_pos = ordinal_arange.expand(beacon_size, window_size) < beacon_arange.unsqueeze(-1)
830
+ # beacon_size, window_size
831
+ ordinal_attention_mask = torch.where(valid_pos, 0, min_value)
832
+ # NOTE: add reference attention_mask so that padding tokens are considered
833
+ ordinal_attention_mask = ordinal_attention_mask[None, None, ...] + reference_attention_mask.unsqueeze(-2)
834
+
835
+ if self.config.beacon_attend_prev:
836
+ beacon_attention_mask = attention_mask.new_full((beacon_size, beacon_size), min_value).triu(1)
837
+ # the beacon token is next to the last ordinal token it attends to
838
+ ordinal_position_ids = position_ids[:, -window_size_with_beacon: -beacon_size]
839
+ beacon_position_ids = ordinal_position_ids[:, compression_ratio - 1::compression_ratio] + torch.arange(1, beacon_size + 1, device=device)[None]
840
+ position_ids[:, beacon_start_idx:] = beacon_position_ids
841
+ else:
842
+ beacon_attention_mask = attention_mask.new_full((beacon_size, beacon_size), min_value).fill_diagonal_(0)
843
+ # the beacon token is next to the last ordinal token it attends to
844
+ ordinal_position_ids = position_ids[:, -window_size_with_beacon: -beacon_size]
845
+ beacon_position_ids = ordinal_position_ids[:, compression_ratio - 1::compression_ratio] + 1
846
+ position_ids[:, beacon_start_idx:] = beacon_position_ids
847
+
848
+ attention_mask[..., beacon_start_idx:, -window_size_with_beacon: -beacon_size] = ordinal_attention_mask
849
+ attention_mask[..., beacon_start_idx:, beacon_start_idx:] = beacon_attention_mask
850
+
851
+ # NOTE: the attention mask should be modified when there is beacon token within the window, not in the input_ids
852
+ elif self.config.beacon_pos == "interleave" and (self.beacon_indices == 1).any():
853
+ assert self.config.beacon_attend_prev == False, f"Make sure beacon_attend_prev is False if using 'interleave' beacon pos!"
854
+
855
+ beacon_indices = self.beacon_indices
856
+
857
+ cur_position_ids = position_ids[:, -len(beacon_indices):]
858
+ base_position = cur_position_ids[:, 0] - 1
859
+ # NOTE: alternate position so that the position of raw tokens are consistent
860
+ position_template = cur_position_ids.new_ones(cur_position_ids.shape)
861
+ position_template[:, compression_ratio + 1::compression_ratio + 1] = 0
862
+ cur_position_ids = base_position + position_template.cumsum(-1)
863
+ position_ids[:, -len(beacon_indices):] = cur_position_ids
864
+
865
+ cur_input_length = len(beacon_indices)
866
+ cur_attention_mask = attention_mask[..., -cur_input_length:, -cur_input_length:]
867
+ # mask all beacon columns
868
+ cur_attention_mask[..., beacon_indices] = min_value
869
+ # beacon tokens can attend to themselves
870
+ input_ids_attention_mask = cur_attention_mask[..., -tgt_size:, -tgt_size:]
871
+ input_ids_attention_mask[..., range(tgt_size), range(tgt_size)] = 0
872
+
873
+ elif self.config.beacon_attn == "segmentation":
874
+ # each beacon can attend to its corresponding sub-interval
875
+
876
+ if self.config.beacon_pos == "append" and beacon_size > 0:
877
+ window_size = self.beacon_window
878
+ window_size_with_beacon = window_size + beacon_size
879
+ beacon_start_idx = -beacon_size
880
+ # batch_size, head_num, window_size
881
+ reference_attention_mask = attention_mask[..., -beacon_size - 1, -window_size_with_beacon: -beacon_size]
882
+
883
+ # beacon_size, compression_ratio
884
+ indices = torch.arange(compression_ratio * beacon_size, device=device).view(beacon_size, -1)
885
+ # beacon_size, window_size
886
+ ordinal_attention_mask = attention_mask.new_full((beacon_size, window_size), min_value)
887
+ ordinal_attention_mask.scatter_(dim=-1, index=indices, value=0)
888
+
889
+ # NOTE: add reference attention_mask so that padding tokens are considered
890
+ ordinal_attention_mask = ordinal_attention_mask[None, None, ...] + reference_attention_mask.unsqueeze(-2)
891
+
892
+ if self.config.beacon_attend_prev:
893
+ beacon_attention_mask = attention_mask.new_full((beacon_size, beacon_size), min_value).triu(1)
894
+ # the beacon token is next to the last ordinal token it attends to
895
+ beacon_position_ids = position_ids.new_full(beacon_size, fill_value=compression_ratio + mem_size)
896
+ beacon_position_ids = beacon_position_ids + torch.arange(beacon_size)
897
+ position_ids[:, beacon_start_idx:] = beacon_position_ids
898
+ else:
899
+ beacon_attention_mask = attention_mask.new_full((beacon_size, beacon_size), min_value).fill_diagonal_(0)
900
+ # the beacon token is next to the last ordinal token it attends to
901
+ beacon_position_ids = position_ids.new_full(beacon_size, fill_value=compression_ratio + mem_size)
902
+ position_ids[:, beacon_start_idx:] = beacon_position_ids
903
+
904
+ attention_mask[..., beacon_start_idx:, -window_size_with_beacon: -beacon_size] = ordinal_attention_mask
905
+ attention_mask[..., beacon_start_idx:, beacon_start_idx:] = beacon_attention_mask
906
+ # beacons of different ratios are blind to others
907
+ attention_mask[..., beacon_start_idx:, -beacon_size: beacon_start_idx] = min_value
908
+
909
+ elif self.config.beacon_pos == "interleave":
910
+ raise NotImplementedError
911
+
912
+ elif self.config.beacon_attn == "full-coverage":
913
+ pass
914
+
915
+ return attention_mask, position_ids
916
+
917
+ def _extract_beacon_and_raw_memory(
918
+ self,
919
+ key,
920
+ value,
921
+ previous_beacon_key,
922
+ previous_beacon_value,
923
+ previous_raw_key,
924
+ previous_raw_value,
925
+ beacon_indices,
926
+ ):
927
+ """Extract beacon and raw memory from the returned key and value when the window is full."""
928
+ key = cat_tensor([
929
+ previous_raw_key,
930
+ key
931
+ ], dim=self.k_seq_dim)
932
+ value = cat_tensor([
933
+ previous_raw_value,
934
+ value
935
+ ], dim=self.v_seq_dim)
936
+
937
+ # NOTE: we use magic slice instead of boolean index here for efficiency
938
+ beacon_key = slice_tensor(key, index=torch.logical_or(beacon_indices == 1, beacon_indices == -1), dim=self.k_seq_dim)
939
+ beacon_value = slice_tensor(value, index=torch.logical_or(beacon_indices == 1, beacon_indices == -1), dim=self.v_seq_dim)
940
+
941
+ if self.config.beacon_accum:
942
+ beacon_key = cat_tensor([previous_beacon_key, beacon_key], dim=self.k_seq_dim)
943
+ beacon_value = cat_tensor([previous_beacon_value, beacon_value], dim=self.v_seq_dim)
944
+
945
+ if self.raw_size_to_cache > 0:
946
+ raw_key = slice_tensor(key, index=beacon_indices == 0, dim=self.k_seq_dim)
947
+ raw_key = slice_tensor(raw_key, start=-raw_size_to_cache, dim=self.k_seq_dim)
948
+
949
+ raw_value = slice_tensor(value, index=beacon_indices == 0, dim=self.v_seq_dim)
950
+ raw_value = slice_tensor(raw_value, start=-raw_size_to_cache, dim=self.v_seq_dim)
951
+
952
+ else:
953
+ raw_key = None
954
+ raw_value = None
955
+
956
+ return beacon_key, beacon_value, raw_key, raw_value
957
+
958
+
959
+ def slice_tensor(x, start=None, end=None, step=None, index=None, dim=2):
960
+ if x is None:
961
+ return None
962
+ if end == 0:
963
+ return None
964
+ if start == x.shape[dim]:
965
+ return None
966
+ if start is not None and start == end:
967
+ return None
968
+ if dim == 2:
969
+ if index is not None:
970
+ return x[:, :, index]
971
+ elif start is None and end is not None:
972
+ if step is None:
973
+ return x[:, :, :end, ...]
974
+ else:
975
+ return x[:, :, :end:step, ...]
976
+ elif start is not None and end is None:
977
+ if step is None:
978
+ return x[:, :, start:, ...]
979
+ else:
980
+ return x[:, :, start::step, ...]
981
+ elif start is not None and end is not None:
982
+ if step is None:
983
+ return x[:, :, start:end, ...]
984
+ else:
985
+ return x[:, :, start:end:step, ...]
986
+ elif dim == 1:
987
+ if index is not None:
988
+ return x[:, :, index]
989
+ elif start is None and end is not None:
990
+ if step is None:
991
+ return x[:, :end, ...]
992
+ else:
993
+ return x[:, :end:step, ...]
994
+ elif start is not None and end is None:
995
+ if step is None:
996
+ return x[:, start:, ...]
997
+ else:
998
+ return x[:, start::step, ...]
999
+ elif start is not None and end is not None:
1000
+ if step is None:
1001
+ return x[:, start:end, ...]
1002
+ else:
1003
+ return x[:, start:end:step, ...]
1004
+ else:
1005
+ raise NotImplementedError
1006
+
1007
+ def cat_tensor(list_of_tensors, dim=-1):
1008
+ list_of_tensors = [t for t in list_of_tensors if t is not None]
1009
+ if len(list_of_tensors) > 1:
1010
+ result = torch.cat(list_of_tensors, dim=dim)
1011
+ elif len(list_of_tensors) == 1:
1012
+ result = list_of_tensors[0]
1013
+ else:
1014
+ result = None
1015
+ return result
1016
+
1017
+ def slice_activations(activations, start=None, end=None, k_seq_dim=2, v_seq_dim=2):
1018
+ new_activations = []
1019
+ for key, value in activations:
1020
+ new_key = slice_tensor(key, start=start, end=end, dim=k_seq_dim)
1021
+ new_value = slice_tensor(value, start=start, end=end, dim=v_seq_dim)
1022
+ new_activations.append([new_key, new_value])
1023
+ return new_activations
1024
+
1025
+ def cat_activations(list_of_activations, k_seq_dim=2, v_seq_dim=2):
1026
+ assert all(len(x) == len(list_of_activations[0]) for x in list_of_activations), f"Make sure all activations have the same number of layers! Found {[len(x) for x in list_of_activations]}."
1027
+
1028
+ new_activations = []
1029
+ for layer_idx in range(len(list_of_activations[0])):
1030
+ keys = [x[layer_idx][0] for x in list_of_activations]
1031
+ values = [x[layer_idx][1] for x in list_of_activations]
1032
+
1033
+ new_key = cat_tensor(keys, dim=k_seq_dim)
1034
+ new_value = cat_tensor(values, dim=v_seq_dim)
1035
+ new_activations.append([new_key, new_value])
1036
+ return new_activations
1037
+
1038
+ def interleave_activations(main_activations, augment_activations, main_spans, augment_spans, k_seq_dim=2, v_seq_dim=2, device=torch.device("cuda")):
1039
+ """ Interleave main_activations and augment_activations according to main_span and augment_span.
1040
+
1041
+ Args:
1042
+ main_span: a list of tuples (start_idx, end_idx). when start_idx and end_idx is None, the augment_activations will be plugged in.
1043
+ augment_span: a list of tuples (start_idx, end_idx)
1044
+ """
1045
+ assert len(main_activations) == len(augment_activations) , f"Make sure main and augment activations have the same number of layers! Found {len(main_activations)} and {len(augment_activations)}!"
1046
+ assert sum(x[0] is None and x[1] is None for x in main_spans) == len(augment_spans), f"Make sure the number of slots for augmentation (start_idx=None and end_idx=None in main_spans) matches the number of augmentations. Found {sum(x for x in main_spans if x[0] is None and x[1] is None)} slots but {len(augment_spans)} augmentations!"
1047
+
1048
+ new_activations = []
1049
+ for layer_idx in range(len(main_activations)):
1050
+ main_key, main_value = main_activations[layer_idx]
1051
+ augment_key, augment_value = augment_activations[layer_idx]
1052
+
1053
+ sliced_keys = []
1054
+ sliced_values = []
1055
+
1056
+ augment_idx = 0
1057
+ for start, end in main_spans:
1058
+ if start is None and end is None:
1059
+ # this means the augment key/value should be plugged in
1060
+ augment_start, augment_end = augment_spans[augment_idx]
1061
+ sliced_key = slice_tensor(
1062
+ augment_key,
1063
+ start=augment_start,
1064
+ end=augment_end,
1065
+ dim=k_seq_dim
1066
+ ).to(device)
1067
+ sliced_value = slice_tensor(
1068
+ augment_value,
1069
+ start=augment_start,
1070
+ end=augment_end,
1071
+ dim=v_seq_dim
1072
+ ).to(device)
1073
+
1074
+ else:
1075
+ sliced_key = slice_tensor(
1076
+ main_key,
1077
+ start=start,
1078
+ end=end,
1079
+ dim=k_seq_dim
1080
+ )
1081
+ sliced_value = slice_tensor(
1082
+ main_value,
1083
+ start=start,
1084
+ end=end,
1085
+ dim=v_seq_dim
1086
+ )
1087
+
1088
+ sliced_keys.append(sliced_key)
1089
+ sliced_values.append(sliced_value)
1090
+
1091
+ new_key = cat_tensor(sliced_keys, dim=k_seq_dim)
1092
+ new_value = cat_tensor(sliced_values, dim=v_seq_dim)
1093
+ new_activations.append([new_key, new_value])
1094
+
1095
+ return new_activations
1096
+
1097
+ def softmax(x:np.ndarray, axis=-1, temperature=1):
1098
+ if isinstance(x, list):
1099
+ x = np.array(x)
1100
+ x = x / temperature
1101
+ x = x - x.max(axis=axis, keepdims=True)
1102
+ y = np.exp(x)
1103
+ return y / y.sum(axis=axis, keepdims=True)
1104
+
1105
+ def l1_norm(x):
1106
+ sum_x = sum(x)
1107
+ x = [y/sum_x for y in x]
1108
+ return x
modeling_qwen2.py ADDED
@@ -0,0 +1,1330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch Qwen2 model."""
21
+ import inspect
22
+ import math
23
+ import warnings
24
+ from typing import List, Optional, Tuple, Union
25
+
26
+ import torch
27
+ import torch.nn.functional as F
28
+ import torch.utils.checkpoint
29
+ from torch import nn
30
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
31
+
32
+ from transformers.activations import ACT2FN
33
+ from transformers.cache_utils import Cache
34
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
35
+ from transformers.modeling_utils import PreTrainedModel
36
+ from transformers.utils import (
37
+ add_start_docstrings,
38
+ add_start_docstrings_to_model_forward,
39
+ is_flash_attn_2_available,
40
+ is_flash_attn_greater_or_equal_2_10,
41
+ logging,
42
+ replace_return_docstrings,
43
+ )
44
+ from transformers.integrations import is_deepspeed_zero3_enabled
45
+ from .configuration_qwen2 import Qwen2Config
46
+
47
+
48
+ if is_flash_attn_2_available():
49
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
50
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
51
+
52
+ _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
53
+
54
+ from ..modeling_beacon import Memory
55
+ from ..modeling_utils import optional_grad_ctx, compute_loss, get_rope, ModelOutput
56
+
57
+
58
+ logger = logging.get_logger(__name__)
59
+
60
+
61
+ _CHECKPOINT_FOR_DOC = "Qwen/Qwen2-7B-beta"
62
+ _CONFIG_FOR_DOC = "Qwen2Config"
63
+
64
+ QWEN2_PRETRAINED_MODEL_ARCHIVE_LIST = [
65
+ "Qwen/Qwen2-7B-beta",
66
+ # See all Qwen2 models at https://huggingface.co/models?filter=qwen2
67
+ ]
68
+
69
+
70
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
71
+ def _get_unpad_data(attention_mask):
72
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
73
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
74
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
75
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
76
+ return (
77
+ indices,
78
+ cu_seqlens,
79
+ max_seqlen_in_batch,
80
+ )
81
+
82
+
83
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Qwen2
84
+ class Qwen2RMSNorm(nn.Module):
85
+ def __init__(self, hidden_size, eps=1e-6):
86
+ """
87
+ Qwen2RMSNorm is equivalent to T5LayerNorm
88
+ """
89
+ super().__init__()
90
+ self.weight = nn.Parameter(torch.ones(hidden_size))
91
+ self.variance_epsilon = eps
92
+
93
+ def forward(self, hidden_states):
94
+ input_dtype = hidden_states.dtype
95
+ hidden_states = hidden_states.to(torch.float32)
96
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
97
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
98
+ return self.weight * hidden_states.to(input_dtype)
99
+
100
+
101
+ # Copied from transformers.models.mistral.modeling_mistral.Qwen2MLP with Qwen2->Qwen2
102
+ class Qwen2MLP(nn.Module):
103
+ def __init__(self, config):
104
+ super().__init__()
105
+ self.config = config
106
+ self.hidden_size = config.hidden_size
107
+ self.intermediate_size = config.intermediate_size
108
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
109
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
110
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
111
+ self.act_fn = ACT2FN[config.hidden_act]
112
+
113
+ def forward(self, x):
114
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
115
+ return down_proj
116
+
117
+
118
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
119
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
120
+ """
121
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
122
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
123
+ """
124
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
125
+ if n_rep == 1:
126
+ return hidden_states
127
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
128
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
129
+
130
+
131
+ class Qwen2Attention(nn.Module):
132
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
133
+
134
+ def __init__(self, config: Qwen2Config, layer_idx: Optional[int] = None):
135
+ super().__init__()
136
+ self.config = config
137
+ self.layer_idx = layer_idx
138
+ if layer_idx is None:
139
+ logger.warning_once(
140
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
141
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
142
+ "when creating this class."
143
+ )
144
+
145
+ self.attention_dropout = config.attention_dropout
146
+ self.hidden_size = config.hidden_size
147
+ self.num_heads = config.num_attention_heads
148
+ self.head_dim = self.hidden_size // self.num_heads
149
+ self.num_key_value_heads = config.num_key_value_heads
150
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
151
+ self.max_position_embeddings = config.max_position_embeddings
152
+ self.rope_theta = config.rope_theta
153
+ self.is_causal = True
154
+
155
+ if (self.head_dim * self.num_heads) != self.hidden_size:
156
+ raise ValueError(
157
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
158
+ f" and `num_heads`: {self.num_heads})."
159
+ )
160
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
161
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
162
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
163
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
164
+
165
+ self.rotary_emb = get_rope(self.head_dim, config.rope_theta, config.max_position_embeddings, getattr(config, "rope_scaling", None))
166
+
167
+ # NOTE: add extra parameters for beacon tokens
168
+ # skip post initialization to speed up loading
169
+ if "q" in config.beacon_param:
170
+ self.beacon_q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=self.q_proj.bias is not None)
171
+ # NOTE: initialize the beacon parameters as zero
172
+ self.beacon_q_proj.weight.data.zero_()
173
+ self.beacon_q_proj._is_hf_initialized = True
174
+ if "k" in config.beacon_param:
175
+ self.beacon_k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=self.k_proj.bias is not None)
176
+ self.beacon_k_proj.weight.data.zero_()
177
+ self.beacon_k_proj._is_hf_initialized = True
178
+ if "v" in config.beacon_param:
179
+ self.beacon_v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=self.v_proj.bias is not None)
180
+ self.beacon_v_proj.weight.data.zero_()
181
+ self.beacon_v_proj._is_hf_initialized = True
182
+ if "o" in config.beacon_param:
183
+ self.beacon_o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=self.o_proj.bias is not None)
184
+ self.beacon_o_proj.weight.data.zero_()
185
+ self.beacon_o_proj._is_hf_initialized = True
186
+
187
+ def _init_beacon_proj(self, missing_keys):
188
+ """Initialize the beacon projection weight with that of the ordinal projection."""
189
+ beacon_param = self.config.beacon_param
190
+
191
+ if is_deepspeed_zero3_enabled():
192
+ # FIXME: after deepspeed initialization, some weights becomes non-zero
193
+ # For Mistral, there are rows that are full of zeros
194
+ # For Mistral, there are values bigger than 1e29...
195
+
196
+ import deepspeed
197
+ if "q" in beacon_param:
198
+ params = [self.beacon_q_proj.weight, self.q_proj.weight]
199
+ if self.q_proj.bias is not None:
200
+ params.extend([self.beacon_q_proj.bias, self.q_proj.bias])
201
+ with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
202
+ # FIXME: after deepspeed initialization, some weights becomes non-zero, but there are rows that are full of zeros
203
+ if (self.beacon_q_proj.weight.sum(-1) == 0).any() or (self.beacon_q_proj.weight > 1e29).any():
204
+ self.beacon_q_proj.weight.data[:] = self.q_proj.weight.data
205
+ if self.q_proj.bias is not None:
206
+ self.beacon_q_proj.bias.data[:] = self.q_proj.bias.data
207
+ if "k" in beacon_param:
208
+ params = [self.beacon_k_proj.weight, self.k_proj.weight]
209
+ if self.k_proj.bias is not None:
210
+ params.extend([self.beacon_k_proj.bias, self.k_proj.bias])
211
+ with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
212
+ # FIXME: after deepspeed initialization, some weights becomes non-zero, but there are rows that are full of zeros
213
+ if (self.beacon_k_proj.weight.sum(-1) == 0).any() or (self.beacon_k_proj.weight > 1e29).any():
214
+ self.beacon_k_proj.weight.data[:] = self.k_proj.weight.data
215
+ if self.k_proj.bias is not None:
216
+ self.beacon_k_proj.bias.data[:] = self.k_proj.bias.data
217
+ if "v" in beacon_param:
218
+ params = [self.beacon_v_proj.weight, self.v_proj.weight]
219
+ if self.v_proj.bias is not None:
220
+ params.extend([self.beacon_v_proj.bias, self.v_proj.bias])
221
+ with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
222
+ # FIXME: after deepspeed initialization, some weights becomes non-zero, but there are rows that are full of zeros
223
+ if (self.beacon_v_proj.weight.sum(-1) == 0).any() or (self.beacon_v_proj.weight > 1e29).any():
224
+ self.beacon_v_proj.weight.data[:] = self.v_proj.weight.data
225
+ if self.v_proj.bias is not None:
226
+ self.beacon_v_proj.bias.data[:] = self.v_proj.bias.data
227
+ if "o" in beacon_param:
228
+ params = [self.beacon_o_proj.weight, self.o_proj.weight]
229
+ if self.o_proj.bias is not None:
230
+ params.extend([self.beacon_o_proj.bias, self.o_proj.bias])
231
+ with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
232
+ # FIXME: after deepspeed initialization, some weights becomes non-zero, but there are rows that are full of zeros
233
+ if (self.beacon_o_proj.weight.sum(-1) == 0).any() or (self.beacon_o_proj.weight > 1e29).any():
234
+ self.beacon_o_proj.weight.data[:] = self.o_proj.weight.data
235
+ if self.o_proj.bias is not None:
236
+ self.beacon_o_proj.bias.data[:] = self.o_proj.bias.data
237
+ else:
238
+ # only copy the value in-place, without tieing the weight
239
+ if "q" in beacon_param and any("beacon_q_proj" in missing_key for missing_key in missing_keys):
240
+ # FIXME: some beacon weights are not initialized as zero for mistral model, why?
241
+ # if (self.beacon_q_proj.weight == 0).all():
242
+ self.beacon_q_proj.weight.data[:] = self.q_proj.weight.data
243
+ if self.q_proj.bias is not None:
244
+ self.beacon_q_proj.bias.data[:] = self.q_proj.bias.data
245
+ if "k" in beacon_param and any("beacon_k_proj" in missing_key for missing_key in missing_keys):
246
+ # if (self.beacon_k_proj.weight == 0).all():
247
+ self.beacon_k_proj.weight.data[:] = self.k_proj.weight.data
248
+ if self.k_proj.bias is not None:
249
+ self.beacon_k_proj.bias.data[:] = self.k_proj.bias.data
250
+ if "v" in beacon_param and any("beacon_v_proj" in missing_key for missing_key in missing_keys):
251
+ # if (self.beacon_v_proj.weight == 0).all():
252
+ self.beacon_v_proj.weight.data[:] = self.v_proj.weight.data
253
+ if self.v_proj.bias is not None:
254
+ self.beacon_v_proj.bias.data[:] = self.v_proj.bias.data
255
+ if "o" in beacon_param and any("beacon_o_proj" in missing_key for missing_key in missing_keys):
256
+ # if (self.beacon_o_proj.weight == 0).all():
257
+ self.beacon_o_proj.weight.data[:] = self.o_proj.weight.data
258
+ if self.o_proj.bias is not None:
259
+ self.beacon_o_proj.bias.data[:] = self.o_proj.bias.data
260
+
261
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
262
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
263
+
264
+ def qkv_proj_with_beacon(self, hidden_states, beacon_size, beacon_indices):
265
+ if beacon_size > 0:
266
+ # NOTE: when beacon_pos == "interleave", the beacon_indices points to all beacon tokens in the current window (cached activations + input_ids), so we shall slice out the part corresponding to the input_ids
267
+ cur_beacon_indices = beacon_indices[-hidden_states.shape[1]:]
268
+
269
+ # NOTE: there is slight redundant computation because ordinal tokens should never be projected by beacon matrices, but we are doing this for efficiency
270
+ if "q" in self.config.beacon_param:
271
+ ordinal_query_states = self.q_proj(hidden_states)
272
+ beacon_query_states = self.beacon_q_proj(hidden_states)
273
+ query_states = torch.where((cur_beacon_indices == 0)[:, None], ordinal_query_states, beacon_query_states)
274
+ if (cur_beacon_indices == 2).any():
275
+ # beacon_indices == 2 means the beacon token is used to replicate the ones in previous window for parallel encoding
276
+ # we should slice out all beacon tokens then copy them to the replicate beacon tokens
277
+ query_states[:, cur_beacon_indices == 2] = beacon_query_states[:, cur_beacon_indices == 1][:, :(cur_beacon_indices == 2).sum()]
278
+ else:
279
+ query_states = self.q_proj(hidden_states)
280
+
281
+ if "k" in self.config.beacon_param:
282
+ ordinal_key_states = self.k_proj(hidden_states)
283
+ beacon_key_states = self.beacon_k_proj(hidden_states)
284
+ key_states = torch.where((cur_beacon_indices == 0)[:, None], ordinal_key_states, beacon_key_states)
285
+ if (cur_beacon_indices == 2).any():
286
+ # beacon_indices == 2 means the beacon token is used to replicate the ones in previous window for parallel encoding
287
+ # we should slice out all beacon tokens then copy them to the replicate beacon tokens
288
+ key_states[:, cur_beacon_indices == 2] = beacon_key_states[:, cur_beacon_indices == 1][:, :(cur_beacon_indices == 2).sum()]
289
+ else:
290
+ key_states = self.k_proj(hidden_states)
291
+
292
+ if "v" in self.config.beacon_param:
293
+ ordinal_value_states = self.v_proj(hidden_states)
294
+ beacon_value_states = self.beacon_v_proj(hidden_states)
295
+ value_states = torch.where((cur_beacon_indices == 0)[:, None], ordinal_value_states, beacon_value_states)
296
+ if (cur_beacon_indices == 2).any():
297
+ # beacon_indices == 2 means the beacon token is used to replicate the ones in previous window for parallel encoding
298
+ # we should slice out all beacon tokens then copy them to the replicate beacon tokens
299
+ value_states[:, cur_beacon_indices == 2] = beacon_value_states[:, cur_beacon_indices == 1][:, :(cur_beacon_indices == 2).sum()]
300
+ else:
301
+ value_states = self.v_proj(hidden_states)
302
+
303
+ else:
304
+ query_states = self.q_proj(hidden_states)
305
+ key_states = self.k_proj(hidden_states)
306
+ value_states = self.v_proj(hidden_states)
307
+
308
+ return query_states, key_states, value_states
309
+
310
+ def o_proj_with_beacon(self, attn_output, beacon_size, beacon_indices):
311
+ if beacon_size > 0:
312
+ # NOTE: when beacon_pos == "interleave", the beacon_indices points to all beacon tokens in the current window (cached activations + input_ids), so we shall slice out the part corresponding to the input_ids
313
+ cur_beacon_indices = beacon_indices[-attn_output.shape[1]:]
314
+
315
+ if "o" in self.config.beacon_param:
316
+ ordinal_attn_output = self.o_proj(attn_output)
317
+ beacon_attn_output = self.beacon_o_proj(attn_output)
318
+ attn_output = torch.where((cur_beacon_indices == 0)[:, None], ordinal_attn_output, beacon_attn_output)
319
+ else:
320
+ attn_output = self.o_proj(attn_output)
321
+ else:
322
+ attn_output = self.o_proj(attn_output)
323
+ return attn_output
324
+
325
+ def forward(
326
+ self,
327
+ hidden_states: torch.Tensor,
328
+ attention_mask: Optional[torch.Tensor] = None,
329
+ position_ids: Optional[torch.LongTensor] = None,
330
+ past_key_value: Optional[Cache] = None,
331
+ output_attentions: bool = False,
332
+ use_cache: bool = False,
333
+ **kwargs,
334
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
335
+ if "padding_mask" in kwargs:
336
+ warnings.warn(
337
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
338
+ )
339
+
340
+ bsz, q_len, _ = hidden_states.size()
341
+ kv_seq_len = hidden_states.shape[-2]
342
+ past_key, past_value, beacon_size, beacon_indices = past_key_value
343
+
344
+ if past_key is not None:
345
+ past_seq_len = past_key.shape[2]
346
+ kv_seq_len += past_seq_len
347
+ else:
348
+ past_seq_len = 0
349
+
350
+ query_states, key_states, value_states = self.qkv_proj_with_beacon(hidden_states, beacon_size, beacon_indices)
351
+
352
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
353
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
354
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
355
+
356
+ # return keys and values before rope
357
+ # NOTE: incrementally return keys and values for efficiency
358
+ past_key_value = (key_states, value_states, beacon_size, beacon_indices)
359
+
360
+ if past_key is not None:
361
+ # reuse k, v, self_attention
362
+ key_states = torch.cat([past_key, key_states], dim=2)
363
+ value_states = torch.cat([past_value, value_states], dim=2)
364
+
365
+ query_states, key_states = self.rotary_emb(query_states, key_states, position_ids)
366
+
367
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
368
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
369
+
370
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
371
+
372
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
373
+ raise ValueError(
374
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
375
+ f" {attn_weights.size()}"
376
+ )
377
+
378
+ if attention_mask is not None:
379
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
380
+ raise ValueError(
381
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
382
+ )
383
+ attn_weights = attn_weights + attention_mask
384
+
385
+ # upcast attention to fp32
386
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
387
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
388
+ attn_output = torch.matmul(attn_weights, value_states)
389
+
390
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
391
+ raise ValueError(
392
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
393
+ f" {attn_output.size()}"
394
+ )
395
+
396
+ attn_output = attn_output.transpose(1, 2).contiguous()
397
+
398
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
399
+
400
+ attn_output = self.o_proj_with_beacon(attn_output, beacon_size, beacon_indices)
401
+
402
+ if not output_attentions:
403
+ attn_weights = None
404
+
405
+ return attn_output, attn_weights, past_key_value
406
+
407
+
408
+ class Qwen2SdpaAttention(Qwen2Attention):
409
+ """
410
+ Qwen2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
411
+ `Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
412
+ SDPA API.
413
+ """
414
+
415
+ # Adapted from Qwen2Attention.forward
416
+ def forward(
417
+ self,
418
+ hidden_states: torch.Tensor,
419
+ attention_mask: Optional[torch.Tensor] = None,
420
+ position_ids: Optional[torch.LongTensor] = None,
421
+ past_key_value: Optional[Cache] = None,
422
+ output_attentions: bool = False,
423
+ use_cache: bool = False,
424
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
425
+ if output_attentions:
426
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
427
+ logger.warning_once(
428
+ "Qwen2Model is using Qwen2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
429
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
430
+ )
431
+ return super().forward(
432
+ hidden_states=hidden_states,
433
+ attention_mask=attention_mask,
434
+ position_ids=position_ids,
435
+ past_key_value=past_key_value,
436
+ output_attentions=output_attentions,
437
+ use_cache=use_cache,
438
+ )
439
+ bsz, q_len, _ = hidden_states.size()
440
+ kv_seq_len = hidden_states.shape[-2]
441
+ past_key, past_value, beacon_size, beacon_indices = past_key_value
442
+ if past_key is not None:
443
+ past_seq_len = past_key.shape[2]
444
+ kv_seq_len += past_seq_len
445
+ else:
446
+ past_seq_len = 0
447
+
448
+ query_states, key_states, value_states = self.qkv_proj_with_beacon(hidden_states, beacon_size, beacon_indices)
449
+
450
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
451
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
452
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
453
+
454
+ # return keys and values before rope
455
+ # NOTE: incrementally return keys and values for efficiency
456
+ past_key_value = (key_states, value_states, beacon_size, beacon_indices)
457
+
458
+ if past_key is not None:
459
+ # reuse k, v, self_attention
460
+ key_states = torch.cat([past_key, key_states], dim=2)
461
+ value_states = torch.cat([past_value, value_states], dim=2)
462
+
463
+ query_states, key_states = self.rotary_emb(query_states, key_states, position_ids)
464
+
465
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
466
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
467
+
468
+ if attention_mask is not None:
469
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
470
+ raise ValueError(
471
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
472
+ )
473
+
474
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
475
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
476
+ if query_states.device.type == "cuda" and attention_mask is not None:
477
+ query_states = query_states.contiguous()
478
+ key_states = key_states.contiguous()
479
+ value_states = value_states.contiguous()
480
+
481
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
482
+ query_states,
483
+ key_states,
484
+ value_states,
485
+ attn_mask=attention_mask,
486
+ dropout_p=self.attention_dropout if self.training else 0.0,
487
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
488
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
489
+ )
490
+
491
+ attn_output = attn_output.transpose(1, 2).contiguous()
492
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
493
+ attn_output = self.o_proj_with_beacon(attn_output, beacon_size, beacon_indices)
494
+
495
+ return attn_output, None, past_key_value
496
+
497
+
498
+ class Qwen2FlashAttention2(Qwen2Attention):
499
+ """
500
+ Qwen2 flash attention module. This module inherits from `Qwen2Attention` as the weights of the module stays
501
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
502
+ flash attention and deal with padding tokens in case the input contains any of them.
503
+ """
504
+
505
+ def __init__(self, *args, **kwargs):
506
+ super().__init__(*args, **kwargs)
507
+
508
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
509
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
510
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
511
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
512
+
513
+ def forward(
514
+ self,
515
+ hidden_states: torch.Tensor,
516
+ attention_mask: Optional[torch.LongTensor] = None,
517
+ position_ids: Optional[torch.LongTensor] = None,
518
+ past_key_value: Optional[Cache] = None,
519
+ output_attentions: bool = False,
520
+ use_cache: bool = False,
521
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
522
+ output_attentions = False
523
+
524
+ bsz, q_len, _ = hidden_states.size()
525
+ kv_seq_len = hidden_states.shape[-2]
526
+
527
+ past_key, past_value, beacon_size, beacon_indices = past_key_value
528
+ if past_key is not None:
529
+ past_seq_len = past_key.shape[2]
530
+ kv_seq_len += past_seq_len
531
+ else:
532
+ past_seq_len = 0
533
+
534
+ query_states, key_states, value_states = self.qkv_proj_with_beacon(hidden_states, beacon_size, beacon_indices)
535
+
536
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
537
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
538
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
539
+
540
+ # return keys and values before rope
541
+ # NOTE: incrementally return keys and values for efficiency
542
+ past_key_value = (key_states, value_states, beacon_size, beacon_indices)
543
+
544
+ if past_key is not None:
545
+ # reuse k, v, self_attention
546
+ key_states = torch.cat([past_key, key_states], dim=2)
547
+ value_states = torch.cat([past_value, value_states], dim=2)
548
+
549
+ query_states, key_states = self.rotary_emb(query_states, key_states, position_ids)
550
+
551
+ # FlashAttention will automatically handle grouped query attention
552
+ # key_states = repeat_kv(key_states, self.num_key_value_groups)
553
+ # value_states = repeat_kv(value_states, self.num_key_value_groups)
554
+
555
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
556
+ # to be able to avoid many of these transpose/reshape/view.
557
+ query_states = query_states.transpose(1, 2)
558
+ key_states = key_states.transpose(1, 2)
559
+ value_states = value_states.transpose(1, 2)
560
+
561
+ dropout_rate = self.attention_dropout if self.training else 0.0
562
+
563
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
564
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
565
+ # cast them back in the correct dtype just to be sure everything works as expected.
566
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
567
+ # in fp32. (Qwen2RMSNorm handles it correctly)
568
+
569
+ input_dtype = query_states.dtype
570
+ if input_dtype == torch.float32:
571
+ if torch.is_autocast_enabled():
572
+ target_dtype = torch.get_autocast_gpu_dtype()
573
+ # Handle the case where the model is quantized
574
+ elif hasattr(self.config, "_pre_quantization_dtype"):
575
+ target_dtype = self.config._pre_quantization_dtype
576
+ else:
577
+ target_dtype = self.q_proj.weight.dtype
578
+
579
+ logger.warning_once(
580
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
581
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
582
+ f" {target_dtype}."
583
+ )
584
+
585
+ query_states = query_states.to(target_dtype)
586
+ key_states = key_states.to(target_dtype)
587
+ value_states = value_states.to(target_dtype)
588
+
589
+ attn_output = self._flash_attention_forward(
590
+ query_states,
591
+ key_states,
592
+ value_states,
593
+ attention_mask,
594
+ q_len,
595
+ dropout=dropout_rate
596
+ )
597
+
598
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
599
+ attn_output = self.o_proj_with_beacon(attn_output, beacon_size, beacon_indices)
600
+
601
+ if not output_attentions:
602
+ attn_weights = None
603
+
604
+ return attn_output, attn_weights, past_key_value
605
+
606
+ def _flash_attention_forward(
607
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
608
+ ):
609
+ """
610
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
611
+ first unpad the input, then computes the attention scores and pad the final attention scores.
612
+
613
+ Args:
614
+ query_states (`torch.Tensor`):
615
+ Input query states to be passed to Flash Attention API
616
+ key_states (`torch.Tensor`):
617
+ Input key states to be passed to Flash Attention API
618
+ value_states (`torch.Tensor`):
619
+ Input value states to be passed to Flash Attention API
620
+ attention_mask (`torch.Tensor`):
621
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
622
+ position of padding tokens and 1 for the position of non-padding tokens.
623
+ dropout (`float`):
624
+ Attention dropout
625
+ softmax_scale (`float`, *optional*):
626
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
627
+ """
628
+ if not self._flash_attn_uses_top_left_mask:
629
+ causal = self.is_causal
630
+ else:
631
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in Qwen2FlashAttention2 __init__.
632
+ causal = self.is_causal and query_length != 1
633
+
634
+ # Contains at least one padding token in the sequence
635
+ if attention_mask is not None:
636
+ batch_size = query_states.shape[0]
637
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
638
+ query_states, key_states, value_states, attention_mask, query_length
639
+ )
640
+
641
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
642
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
643
+
644
+ attn_output_unpad = flash_attn_varlen_func(
645
+ query_states,
646
+ key_states,
647
+ value_states,
648
+ cu_seqlens_q=cu_seqlens_q,
649
+ cu_seqlens_k=cu_seqlens_k,
650
+ max_seqlen_q=max_seqlen_in_batch_q,
651
+ max_seqlen_k=max_seqlen_in_batch_k,
652
+ dropout_p=dropout,
653
+ softmax_scale=softmax_scale,
654
+ causal=causal,
655
+ )
656
+
657
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
658
+ else:
659
+ attn_output = flash_attn_func(
660
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
661
+ )
662
+
663
+ return attn_output
664
+
665
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
666
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
667
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
668
+
669
+ key_layer = index_first_axis(
670
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
671
+ )
672
+ value_layer = index_first_axis(
673
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
674
+ )
675
+ if query_length == kv_seq_len:
676
+ query_layer = index_first_axis(
677
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
678
+ )
679
+ cu_seqlens_q = cu_seqlens_k
680
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
681
+ indices_q = indices_k
682
+ elif query_length == 1:
683
+ max_seqlen_in_batch_q = 1
684
+ cu_seqlens_q = torch.arange(
685
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
686
+ ) # There is a memcpy here, that is very bad.
687
+ indices_q = cu_seqlens_q[:-1]
688
+ query_layer = query_layer.squeeze(1)
689
+ else:
690
+ # The -q_len: slice assumes left padding.
691
+ attention_mask = attention_mask[:, -query_length:]
692
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
693
+
694
+ return (
695
+ query_layer,
696
+ key_layer,
697
+ value_layer,
698
+ indices_q,
699
+ (cu_seqlens_q, cu_seqlens_k),
700
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
701
+ )
702
+
703
+
704
+ QWEN2_ATTENTION_CLASSES = {
705
+ "eager": Qwen2Attention,
706
+ "sdpa": Qwen2SdpaAttention,
707
+ "flash_attention_2": Qwen2FlashAttention2,
708
+ }
709
+
710
+
711
+ class Qwen2DecoderLayer(nn.Module):
712
+ def __init__(self, config: Qwen2Config, layer_idx: int):
713
+ super().__init__()
714
+ self.hidden_size = config.hidden_size
715
+
716
+ if config.use_sliding_window and config._attn_implementation != "flash_attention_2":
717
+ logger.warning_once(
718
+ f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
719
+ "unexpected results may be encountered."
720
+ )
721
+ self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
722
+
723
+ self.mlp = Qwen2MLP(config)
724
+ self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
725
+ self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
726
+
727
+ def forward(
728
+ self,
729
+ hidden_states: torch.Tensor,
730
+ attention_mask: Optional[torch.Tensor] = None,
731
+ position_ids: Optional[torch.LongTensor] = None,
732
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
733
+ output_attentions: Optional[bool] = False,
734
+ use_cache: Optional[bool] = False,
735
+ **kwargs,
736
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
737
+ if "padding_mask" in kwargs:
738
+ warnings.warn(
739
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. "
740
+ "Please make sure use `attention_mask` instead.`"
741
+ )
742
+ """
743
+ Args:
744
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
745
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
746
+ `(batch, sequence_length)` where padding elements are indicated by 0.
747
+ output_attentions (`bool`, *optional*):
748
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
749
+ returned tensors for more detail.
750
+ use_cache (`bool`, *optional*):
751
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
752
+ (see `past_key_values`).
753
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
754
+ """
755
+ residual = hidden_states
756
+
757
+ hidden_states = self.input_layernorm(hidden_states)
758
+
759
+ # Self Attention
760
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
761
+ hidden_states=hidden_states,
762
+ attention_mask=attention_mask,
763
+ position_ids=position_ids,
764
+ past_key_value=past_key_value,
765
+ output_attentions=output_attentions,
766
+ use_cache=use_cache,
767
+ )
768
+ hidden_states = residual + hidden_states
769
+
770
+ # Fully Connected
771
+ residual = hidden_states
772
+ hidden_states = self.post_attention_layernorm(hidden_states)
773
+ hidden_states = self.mlp(hidden_states)
774
+ hidden_states = residual + hidden_states
775
+
776
+ outputs = (hidden_states,)
777
+
778
+ if output_attentions:
779
+ outputs += (self_attn_weights,)
780
+
781
+ if use_cache:
782
+ outputs += (present_key_value,)
783
+
784
+ return outputs
785
+
786
+
787
+ QWEN2_START_DOCSTRING = r"""
788
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
789
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
790
+ etc.)
791
+
792
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
793
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
794
+ and behavior.
795
+
796
+ Parameters:
797
+ config ([`Qwen2Config`]):
798
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
799
+ load the weights associated with the model, only the configuration. Check out the
800
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
801
+ """
802
+
803
+
804
+ @add_start_docstrings(
805
+ "The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
806
+ QWEN2_START_DOCSTRING,
807
+ )
808
+ class Qwen2PreTrainedModel(PreTrainedModel):
809
+ config_class = Qwen2Config
810
+ base_model_prefix = "model"
811
+ supports_gradient_checkpointing = True
812
+ _no_split_modules = ["Qwen2DecoderLayer"]
813
+ _skip_keys_device_placement = "past_key_values"
814
+ _supports_flash_attn_2 = True
815
+ _supports_sdpa = True
816
+ _supports_cache_class = True
817
+
818
+ def _init_weights(self, module):
819
+ std = self.config.initializer_range
820
+ if isinstance(module, nn.Linear):
821
+ module.weight.data.normal_(mean=0.0, std=std)
822
+ if module.bias is not None:
823
+ module.bias.data.zero_()
824
+ elif isinstance(module, nn.Embedding):
825
+ module.weight.data.normal_(mean=0.0, std=std)
826
+ if module.padding_idx is not None:
827
+ module.weight.data[module.padding_idx].zero_()
828
+
829
+
830
+ QWEN2_INPUTS_DOCSTRING = r"""
831
+ Args:
832
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
833
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
834
+ it.
835
+
836
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
837
+ [`PreTrainedTokenizer.__call__`] for details.
838
+
839
+ [What are input IDs?](../glossary#input-ids)
840
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
841
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
842
+
843
+ - 1 for tokens that are **not masked**,
844
+ - 0 for tokens that are **masked**.
845
+
846
+ [What are attention masks?](../glossary#attention-mask)
847
+
848
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
849
+ [`PreTrainedTokenizer.__call__`] for details.
850
+
851
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
852
+ `past_key_values`).
853
+
854
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
855
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
856
+ information on the default strategy.
857
+
858
+ - 1 indicates the head is **not masked**,
859
+ - 0 indicates the head is **masked**.
860
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
861
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
862
+ config.n_positions - 1]`.
863
+
864
+ [What are position IDs?](../glossary#position-ids)
865
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
866
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
867
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
868
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
869
+
870
+ Two formats are allowed:
871
+ - a [`~cache_utils.Cache`] instance;
872
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
873
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
874
+ cache format.
875
+
876
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
877
+ legacy cache format will be returned.
878
+
879
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
880
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
881
+ of shape `(batch_size, sequence_length)`.
882
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
883
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
884
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
885
+ model's internal embedding lookup matrix.
886
+ use_cache (`bool`, *optional*):
887
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
888
+ `past_key_values`).
889
+ output_attentions (`bool`, *optional*):
890
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
891
+ tensors for more detail.
892
+ output_hidden_states (`bool`, *optional*):
893
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
894
+ more detail.
895
+ return_dict (`bool`, *optional*):
896
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
897
+ """
898
+
899
+
900
+ @add_start_docstrings(
901
+ "The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
902
+ QWEN2_START_DOCSTRING,
903
+ )
904
+ class Qwen2Model(Qwen2PreTrainedModel):
905
+ """
906
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`]
907
+
908
+ Args:
909
+ config: Qwen2Config
910
+ """
911
+
912
+ def __init__(self, config: Qwen2Config):
913
+ super().__init__(config)
914
+ self.padding_idx = config.pad_token_id
915
+ self.vocab_size = config.vocab_size
916
+
917
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
918
+
919
+ # BEACON: add beacon embedding
920
+ self.beacon_embed_tokens = nn.Embedding(1, config.hidden_size, self.padding_idx)
921
+ self.beacon_embed_tokens._is_hf_initialized = True
922
+
923
+ self.layers = nn.ModuleList(
924
+ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
925
+ )
926
+ self._attn_implementation = config._attn_implementation
927
+ self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
928
+
929
+ self.gradient_checkpointing = False
930
+ # Initialize weights and apply final processing
931
+ self.post_init()
932
+
933
+ def _init_beacon_embed(self, missing_keys):
934
+ """Initialize the beacon token embedding with that of the eos token."""
935
+ if is_deepspeed_zero3_enabled():
936
+ import deepspeed
937
+ params = [self.beacon_embed_tokens.weight, self.embed_tokens.weight]
938
+ with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
939
+ # deepspeed will initialize the parameters to zero
940
+ if (self.beacon_embed_tokens.weight == 0).all():
941
+ if self.config.beacon_embed_init == "bos":
942
+ self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[self.config.bos_token_id]
943
+ elif self.config.beacon_embed_init == "eos":
944
+ if isinstance(self.config.eos_token_id, list):
945
+ eos_token_id = self.config.eos_token_id[0]
946
+ else:
947
+ eos_token_id = self.config.eos_token_id
948
+ self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[eos_token_id]
949
+ else:
950
+ raise NotImplementedError(f"Make sure beacon_embed_init is either eos or bos, found {self.config.beacon_embed_init}")
951
+ else:
952
+ if any("beacon_embed_tokens" in missing_key for missing_key in missing_keys):
953
+ if self.config.beacon_embed_init == "bos":
954
+ self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[self.config.bos_token_id]
955
+ elif self.config.beacon_embed_init == "eos":
956
+ if isinstance(self.config.eos_token_id, list):
957
+ eos_token_id = self.config.eos_token_id[0]
958
+ else:
959
+ eos_token_id = self.config.eos_token_id
960
+ self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[eos_token_id]
961
+ else:
962
+ raise NotImplementedError(f"Make sure beacon_embed_init is either eos or bos, found {self.config.beacon_embed_init}")
963
+
964
+ def get_input_embeddings(self):
965
+ return self.embed_tokens
966
+
967
+ def set_input_embeddings(self, value):
968
+ self.embed_tokens = value
969
+
970
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
971
+ def forward(
972
+ self,
973
+ input_ids: torch.LongTensor = None,
974
+ attention_mask: Optional[torch.Tensor] = None,
975
+ position_ids: Optional[torch.LongTensor] = None,
976
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
977
+ inputs_embeds: Optional[torch.FloatTensor] = None,
978
+ use_cache: Optional[bool] = None,
979
+ output_attentions: Optional[bool] = None,
980
+ output_hidden_states: Optional[bool] = None,
981
+ return_dict: Optional[bool] = None,
982
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
983
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
984
+ output_hidden_states = (
985
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
986
+ )
987
+ # BEACON: always use cache
988
+ use_cache = True
989
+
990
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
991
+
992
+ # retrieve input_ids and inputs_embeds
993
+ if input_ids is not None and inputs_embeds is not None:
994
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
995
+ elif input_ids is not None:
996
+ batch_size, seq_length = input_ids.shape[:2]
997
+ elif inputs_embeds is not None:
998
+ batch_size, seq_length = inputs_embeds.shape[:2]
999
+ else:
1000
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1001
+
1002
+ past_key, past_value, beacon_size, beacon_indices = past_key_values[0]
1003
+
1004
+ # BEACON: separately embed ordinal tokens and beacon tokens because ordinal tokens do not receive gradients
1005
+ if beacon_size > 0:
1006
+ # NOTE: when beacon_pos == "interleave", the beacon_indices points to all beacon tokens in the current window (cached activations + input_ids), so we shall slice out the part corresponding to the input_ids
1007
+ cur_beacon_indices = beacon_indices[-input_ids.shape[1]:]
1008
+
1009
+ ordinal_input_ids = input_ids[:, cur_beacon_indices == 0]
1010
+ beacon_input_ids = input_ids[:, cur_beacon_indices > 0]
1011
+ ordinal_inputs_embeds = self.embed_tokens(ordinal_input_ids)
1012
+ beacon_input_embeds = self.beacon_embed_tokens(beacon_input_ids - self.config.vocab_size)
1013
+ # create a new embedding tensor
1014
+ inputs_embeds = beacon_input_embeds.new_zeros(*input_ids.shape, beacon_input_embeds.shape[-1])
1015
+ inputs_embeds[:, cur_beacon_indices == 0] = ordinal_inputs_embeds
1016
+ inputs_embeds[:, cur_beacon_indices > 0] = beacon_input_embeds
1017
+
1018
+ else:
1019
+ inputs_embeds = self.embed_tokens(input_ids)
1020
+
1021
+ # embed positions
1022
+ hidden_states = inputs_embeds
1023
+
1024
+ # print(f"input_ids: {input_ids}")
1025
+ # print(f"beacon_indices: {beacon_indices}")
1026
+ # print(f"position_ids: {position_ids}")
1027
+ # print(f"attention_mask:\n{attention_mask == 0}")
1028
+ # x = input()
1029
+ # if x == "s":
1030
+ # return
1031
+
1032
+ # decoder layers
1033
+ all_hidden_states = () if output_hidden_states else None
1034
+ all_self_attns = () if output_attentions else None
1035
+ # BEACON: still use tuple to organize cache
1036
+ next_decoder_cache = () if use_cache else None
1037
+
1038
+ for idx, decoder_layer in enumerate(self.layers):
1039
+ if output_hidden_states:
1040
+ all_hidden_states += (hidden_states,)
1041
+
1042
+ # BEACON: slice out the past_key_value of the corresponding layer
1043
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
1044
+
1045
+ if self.gradient_checkpointing and self.training:
1046
+ layer_outputs = self._gradient_checkpointing_func(
1047
+ decoder_layer.__call__,
1048
+ hidden_states,
1049
+ attention_mask,
1050
+ position_ids,
1051
+ past_key_value,
1052
+ output_attentions,
1053
+ use_cache,
1054
+ )
1055
+ else:
1056
+ layer_outputs = decoder_layer(
1057
+ hidden_states,
1058
+ attention_mask=attention_mask,
1059
+ position_ids=position_ids,
1060
+ past_key_value=past_key_value,
1061
+ output_attentions=output_attentions,
1062
+ use_cache=use_cache,
1063
+ )
1064
+
1065
+ hidden_states = layer_outputs[0]
1066
+
1067
+ if use_cache:
1068
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
1069
+
1070
+ if output_attentions:
1071
+ all_self_attns += (layer_outputs[1],)
1072
+
1073
+ hidden_states = self.norm(hidden_states)
1074
+
1075
+ # add hidden states from the last decoder layer
1076
+ if output_hidden_states:
1077
+ all_hidden_states += (hidden_states,)
1078
+
1079
+ next_cache = next_decoder_cache if use_cache else None
1080
+
1081
+ if not return_dict:
1082
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1083
+ return BaseModelOutputWithPast(
1084
+ last_hidden_state=hidden_states,
1085
+ past_key_values=next_cache,
1086
+ hidden_states=all_hidden_states,
1087
+ attentions=all_self_attns,
1088
+ )
1089
+
1090
+
1091
+ class Qwen2ForCausalLM(Qwen2PreTrainedModel):
1092
+ _tied_weights_keys = ["lm_head.weight"]
1093
+
1094
+ def __init__(self, config):
1095
+ super().__init__(config)
1096
+ self.model = Qwen2Model(config)
1097
+ self.vocab_size = config.vocab_size
1098
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1099
+ # Initialize weights and apply final processing
1100
+ self.post_init()
1101
+
1102
+ def get_input_embeddings(self):
1103
+ return self.model.embed_tokens
1104
+
1105
+ def set_input_embeddings(self, value):
1106
+ self.model.embed_tokens = value
1107
+
1108
+ def get_output_embeddings(self):
1109
+ return self.lm_head
1110
+
1111
+ def set_output_embeddings(self, new_embeddings):
1112
+ self.lm_head = new_embeddings
1113
+
1114
+ def set_decoder(self, decoder):
1115
+ self.model = decoder
1116
+
1117
+ def get_decoder(self):
1118
+ return self.model
1119
+
1120
+ @classmethod
1121
+ def from_pretrained(cls, *args, **kwargs):
1122
+ """Override the default from_pretrained to extend vocab size according to beacon_size."""
1123
+ kwargs.update(output_loading_info=True)
1124
+ model, loading_info = super().from_pretrained(*args, **kwargs)
1125
+
1126
+ # NOTE: set memory after from_pretrained because there may be another transformer model inside the Memory object, which may cause weird erros during loading
1127
+ config = model.config
1128
+ model.memory = Memory(
1129
+ model_config=config,
1130
+ k_seq_dim=2,
1131
+ v_seq_dim=2,
1132
+ )
1133
+
1134
+ missing_keys = loading_info["missing_keys"]
1135
+ # NOTE: the beacon parameters may or may not be loaded from the checkpoint
1136
+ # if it is loaded from the checkpoint, we should not re-initilize it
1137
+ model.model._init_beacon_embed(missing_keys)
1138
+ # initialize weights of possible q,k,v,o,mlp
1139
+ for layer in model.model.layers:
1140
+ layer.self_attn._init_beacon_proj(missing_keys)
1141
+
1142
+ return model
1143
+
1144
+ def _native_forward(
1145
+ self,
1146
+ input_ids: torch.LongTensor = None,
1147
+ attention_mask: Optional[torch.Tensor] = None,
1148
+ position_ids: Optional[torch.LongTensor] = None,
1149
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1150
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1151
+ labels: Optional[torch.LongTensor] = None,
1152
+ use_cache: Optional[bool] = None,
1153
+ output_attentions: Optional[bool] = None,
1154
+ output_hidden_states: Optional[bool] = None,
1155
+ return_dict: Optional[bool] = None,
1156
+ ) -> Union[Tuple, ModelOutput]:
1157
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1158
+ output_hidden_states = (
1159
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1160
+ )
1161
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1162
+
1163
+ # when we directly call _native_forward, the past_key_values would be None
1164
+ if past_key_values is None:
1165
+ # NOTE: set beacon size to 0 to avoid using any beacon parameters, see Qwen2Attention.forward
1166
+ past_key_values = [(None, None, 0, None) for _ in range(self.config.num_hidden_layers)]
1167
+
1168
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1169
+ outputs = self.model(
1170
+ input_ids=input_ids,
1171
+ attention_mask=attention_mask,
1172
+ position_ids=position_ids,
1173
+ past_key_values=past_key_values,
1174
+ inputs_embeds=inputs_embeds,
1175
+ use_cache=use_cache,
1176
+ output_attentions=output_attentions,
1177
+ output_hidden_states=output_hidden_states,
1178
+ return_dict=return_dict,
1179
+ )
1180
+
1181
+ hidden_states = outputs[0]
1182
+ logits = self.lm_head(hidden_states)
1183
+ logits = logits.float()
1184
+
1185
+ loss = None
1186
+ batch_loss = None
1187
+ token_loss = None
1188
+
1189
+ if labels is not None:
1190
+ loss, batch_loss, token_loss = compute_loss(logits, labels, shift=False)
1191
+
1192
+ if not return_dict:
1193
+ output = (logits,) + outputs[1:]
1194
+ return (loss,) + output if loss is not None else output
1195
+
1196
+ return ModelOutput(
1197
+ loss=loss,
1198
+ batch_loss=batch_loss,
1199
+ token_loss=token_loss,
1200
+ logits=logits,
1201
+ past_key_values=outputs.past_key_values,
1202
+ hidden_states=outputs.hidden_states,
1203
+ attentions=outputs.attentions,
1204
+ )
1205
+
1206
+ def _beacon_forward(self,
1207
+ input_ids: torch.LongTensor = None,
1208
+ attention_mask: Optional[torch.Tensor] = None,
1209
+ position_ids: Optional[torch.LongTensor] = None,
1210
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1211
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1212
+ labels: Optional[torch.LongTensor] = None,
1213
+ use_cache: Optional[bool] = None,
1214
+ output_attentions: Optional[bool] = None,
1215
+ output_hidden_states: Optional[bool] = None,
1216
+ return_dict: Optional[bool] = None,
1217
+ beacon_skip_first: Optional[int] = None,
1218
+ beacon_skip_last: Optional[int] = None,
1219
+ ):
1220
+ # t1 = time.time()
1221
+
1222
+ # initialize cache
1223
+ self.memory.prepare(
1224
+ input_ids=input_ids,
1225
+ attention_mask=attention_mask,
1226
+ labels=labels,
1227
+ skip_first=beacon_skip_first,
1228
+ skip_last=beacon_skip_last,
1229
+ )
1230
+
1231
+ # t2 = time.time()
1232
+
1233
+ while not self.memory.finish:
1234
+
1235
+ # t3 = time.time()
1236
+
1237
+ input_ids, attention_mask, position_ids, past_key_values, labels = self.memory.step()
1238
+
1239
+ # t4 = time.time()
1240
+
1241
+ outputs = self._native_forward(
1242
+ input_ids=input_ids,
1243
+ attention_mask=attention_mask,
1244
+ position_ids=position_ids,
1245
+ past_key_values=past_key_values,
1246
+ inputs_embeds=inputs_embeds,
1247
+ use_cache=use_cache,
1248
+ output_attentions=output_attentions,
1249
+ output_hidden_states=output_hidden_states,
1250
+ return_dict=return_dict,
1251
+ labels=labels,
1252
+ )
1253
+
1254
+ # t5 = time.time()
1255
+
1256
+ # update past_key_values
1257
+ self.memory.update_memory(outputs.past_key_values)
1258
+
1259
+ # t6 = time.time()
1260
+
1261
+ if labels is not None:
1262
+ # update loss
1263
+ self.memory.update_loss(outputs.batch_loss, (labels != -100).sum(-1))
1264
+
1265
+ # t7 = time.time()
1266
+
1267
+ # print(f"step time: {t4-t3}, forward time: {t5-t4}, update time: {t6-t5}, loss time: {t7-t6}")
1268
+ # input()
1269
+
1270
+ # t8 = time.time()
1271
+
1272
+ # output loss, past_key_values, and perplexity
1273
+ outputs = self.memory.output(outputs)
1274
+
1275
+ # t9 = time.time()
1276
+
1277
+ # print(f"output time: {t9-t8}")
1278
+ # input()
1279
+
1280
+ return outputs
1281
+
1282
+ def forward(self, **kwargs):
1283
+ """Forward computation over a batch of sequences.
1284
+ """
1285
+ # only allow gradient when training
1286
+ with optional_grad_ctx(with_grad=self.training):
1287
+ # we can disable beacon to use the original mistral
1288
+ if hasattr(self, "_enable_beacon") and self._enable_beacon == False:
1289
+ return self._native_forward(**kwargs)
1290
+ else:
1291
+ return self._beacon_forward(**kwargs)
1292
+
1293
+ def prepare_inputs_for_generation(
1294
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1295
+ ):
1296
+ if past_key_values:
1297
+ input_ids = input_ids[:, -1:]
1298
+
1299
+ position_ids = kwargs.get("position_ids", None)
1300
+ if attention_mask is not None and position_ids is None:
1301
+ # create position_ids on the fly for batch generation
1302
+ position_ids = attention_mask.long().cumsum(-1) - 1
1303
+ position_ids.masked_fill_(attention_mask == 0, 1)
1304
+ if past_key_values:
1305
+ position_ids = position_ids[:, -1].unsqueeze(-1)
1306
+
1307
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1308
+ if inputs_embeds is not None and past_key_values is None:
1309
+ model_inputs = {"inputs_embeds": inputs_embeds}
1310
+ else:
1311
+ model_inputs = {"input_ids": input_ids}
1312
+
1313
+ model_inputs.update(
1314
+ {
1315
+ "position_ids": position_ids,
1316
+ "past_key_values": past_key_values,
1317
+ "use_cache": kwargs.get("use_cache"),
1318
+ "attention_mask": attention_mask,
1319
+ }
1320
+ )
1321
+ return model_inputs
1322
+
1323
+ @staticmethod
1324
+ def _reorder_cache(past_key_values, beam_idx):
1325
+ reordered_past = ()
1326
+ for layer_past in past_key_values:
1327
+ reordered_past += (
1328
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1329
+ )
1330
+ return reordered_past
modeling_utils.py ADDED
@@ -0,0 +1,711 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from tqdm import tqdm
4
+ from dataclasses import dataclass
5
+ from contextlib import nullcontext
6
+ from typing import Mapping, Optional, Tuple
7
+ from accelerate import Accelerator
8
+ from collections import defaultdict
9
+ from transformers.modeling_outputs import BaseModelOutputWithPast
10
+
11
+
12
+ def optional_grad_ctx(with_grad=False):
13
+ if with_grad:
14
+ return nullcontext()
15
+ else:
16
+ return torch.no_grad()
17
+
18
+ def move_to_device(data, device):
19
+ """
20
+ Prepares one `data` before feeding it to the model, be it a tensor or a nested list/dictionary of tensors.
21
+ """
22
+ if isinstance(data, Mapping):
23
+ return type(data)({k: move_to_device(v, device) for k, v in data.items()})
24
+ elif isinstance(data, (tuple, list)):
25
+ return type(data)(move_to_device(v, device) for v in data)
26
+ elif isinstance(data, torch.Tensor):
27
+ kwargs = {"device": device}
28
+ return data.to(**kwargs)
29
+ else:
30
+ return data
31
+
32
+ def get_shifted_labels(input_ids):
33
+ if isinstance(input_ids, torch.Tensor):
34
+ labels = input_ids.clone()
35
+ labels = torch.cat([labels[:, 1:], labels.new_zeros((input_ids.shape[0], 1)) - 100], dim=-1)
36
+ elif isinstance(input_ids, list) and isinstance(input_ids[0], int):
37
+ labels = input_ids.copy()
38
+ labels = labels[1:] + [-100]
39
+ elif isinstance(input_ids, list) and isinstance(input_ids[0], list):
40
+ labels = input_ids.copy()
41
+ for i, label in enumerate(labels):
42
+ labels[i] = labels[i][1:] + [-100]
43
+ else:
44
+ raise NotImplementedError
45
+ return labels
46
+
47
+ def compute_loss(logits, labels, shift=False):
48
+ """
49
+ Returns:
50
+ token_loss: batch_size, seq_length
51
+ """
52
+ if shift:
53
+ labels = get_shifted_labels(labels)
54
+
55
+ labels = labels.to(logits.device)
56
+ batch_size = logits.shape[0]
57
+
58
+ # NOTE: the loss on -100 labels is 0 by default
59
+ token_loss = torch.nn.functional.cross_entropy(
60
+ logits.flatten(0, 1),
61
+ labels.reshape(-1),
62
+ reduction="none"
63
+ ).reshape(batch_size, -1) # batch_size, seq_len
64
+
65
+ # print(token_loss)
66
+
67
+ valid_token_num = (labels != -100).sum(-1) # batch_size
68
+ all_valid_token_num = valid_token_num.sum()
69
+
70
+ if all_valid_token_num > 0:
71
+ loss = token_loss.sum() / valid_token_num.sum()
72
+ else:
73
+ loss = token_loss.sum()
74
+
75
+ batch_loss = token_loss.sum(-1) / valid_token_num
76
+ # prevent nan
77
+ if (valid_token_num == 0).any():
78
+ batch_loss = batch_loss.masked_fill(valid_token_num == 0, 0.)
79
+
80
+ return loss, batch_loss, token_loss
81
+
82
+
83
+ @torch.no_grad()
84
+ def evaluate_perplexity(model, dataloader, accelerator:Optional[Accelerator]=None):
85
+ if accelerator is not None and type(dataloader) == torch.utils.data.DataLoader:
86
+ # if the dataloader has been prepared, we shall not prepare it twice, especially in case of deepspeed
87
+ dataloader = accelerator.prepare(dataloader)
88
+
89
+ # if accelerator.process_index == 0:
90
+ # for name, x in model.named_parameters():
91
+ # print(f"{name: ^80} {x.dtype}")
92
+
93
+ all_loss = defaultdict(list)
94
+ for i, x in enumerate(tqdm(dataloader, desc="Computing Perplexity")):
95
+ # NOTE: important to reset memory for every batch
96
+ if hasattr(model, "memory"):
97
+ model.memory.reset()
98
+
99
+ # the seq id
100
+ index = x.pop("index")
101
+ # length is used to group training data, no use here
102
+ length = x.pop("length", None)
103
+
104
+ output = model(**x)
105
+
106
+ valid_token_num = (x["labels"] != -100).sum(-1)
107
+
108
+ # NOTE: we need the loss for each element in the batch for accurate computation, because the number of valid tokens may differ among elements
109
+ if hasattr(output, "batch_loss"):
110
+ # output from our model has batch_loss by default
111
+ batch_loss = output.batch_loss
112
+ else:
113
+ # output from other models does not
114
+ loss, batch_loss, token_loss = compute_loss(output.logits, x["labels"], shift=True)
115
+
116
+ index = index.tolist()
117
+ batch_loss = batch_loss.tolist()
118
+ valid_token_num = valid_token_num.tolist()
119
+
120
+ if accelerator is not None and accelerator.num_processes > 1:
121
+ # num_device * batch_size
122
+ index = accelerator.gather_for_metrics(index)
123
+ batch_loss = accelerator.gather_for_metrics(batch_loss)
124
+ valid_token_num = accelerator.gather_for_metrics(valid_token_num)
125
+
126
+ for _id, _loss, _num in zip(index, batch_loss, valid_token_num):
127
+ # loss times num is the total loss of all valid tokens
128
+ all_loss[_id].append((_loss * _num, _num))
129
+
130
+ all_loss = dict(all_loss)
131
+ for _id, loss_and_num in all_loss.items():
132
+ # sum up the loss for all valid tokens in the entire sequence, and divide the number of valid tokens
133
+ all_loss[_id] = sum([x[0] for x in loss_and_num]) / sum(x[1] for x in loss_and_num)
134
+
135
+ # average across then take exp
136
+ perplexity = math.exp(sum(all_loss.values()) / len(all_loss))
137
+ return perplexity
138
+
139
+
140
+ @torch.no_grad()
141
+ def evaluate_generation(model, dataloader, accelerator:Optional[Accelerator]=None, tokenizer=None, return_new_tokens_only=True, **generation_config):
142
+ if accelerator is not None and type(dataloader) == torch.utils.data.DataLoader:
143
+ # if the dataloader has been prepared, we shall not prepare it twice, especially in case of deepspeed
144
+ dataloader = accelerator.prepare(dataloader)
145
+
146
+ all_indices = []
147
+ all_outputs = []
148
+
149
+ index = 0
150
+
151
+ for i, x in enumerate(tqdm(dataloader, desc="Computing Generation")):
152
+ # if i > 3:
153
+ # break
154
+
155
+ # NOTE: important to reset memory for every batch
156
+ if hasattr(model, "memory"):
157
+ model.memory.reset()
158
+
159
+ # length is used to group training data, no use here
160
+ length = x.pop("length", None)
161
+
162
+ # if indices are None, we use batch size
163
+ indices = x.pop("index", None)
164
+ if indices is None:
165
+ indices = list(range(index, index + x['input_ids'].shape[0]))
166
+ index += x['input_ids'].shape[0]
167
+ else:
168
+ indices = indices.tolist()
169
+
170
+ outputs = model.generate(**x, **generation_config)
171
+ if return_new_tokens_only:
172
+ start_idx = x["input_ids"].shape[1]
173
+ outputs = outputs[:, start_idx:]
174
+
175
+ outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
176
+
177
+ if accelerator is not None and accelerator.num_processes > 1:
178
+ outputs = accelerator.gather_for_metrics(outputs)
179
+ indices = accelerator.gather_for_metrics(indices)
180
+
181
+ outputs = outputs
182
+ indices = indices
183
+ all_indices.extend(indices)
184
+ all_outputs.extend(outputs)
185
+
186
+ return all_indices, all_outputs
187
+
188
+
189
+ @torch.no_grad()
190
+ def evaluate_nll(model, dataloader, accelerator:Optional[Accelerator]=None):
191
+ if accelerator is not None and type(dataloader) == torch.utils.data.DataLoader:
192
+ # if the dataloader has been prepared, we shall not prepare it twice, especially in case of deepspeed
193
+ dataloader = accelerator.prepare(dataloader)
194
+
195
+ # if accelerator.process_index == 0:
196
+ # for name, x in model.named_parameters():
197
+ # print(f"{name: ^80} {x.dtype}")
198
+
199
+ all_loss = defaultdict(list)
200
+ for i, x in enumerate(tqdm(dataloader, desc="Computing Perplexity")):
201
+ # NOTE: important to reset memory for every batch
202
+ if hasattr(model, "memory"):
203
+ model.memory.reset()
204
+
205
+ # the seq id
206
+ index = x.pop("index")
207
+ # length is used to group training data, no use here
208
+ length = x.pop("length", None)
209
+
210
+ output = model(**x)
211
+
212
+ valid_token_num = (x["labels"] != -100).sum()
213
+
214
+ # NOTE: we need the loss for each element in the batch for accurate computation, because the number of valid tokens may differ among elements
215
+ if hasattr(output, "batch_loss"):
216
+ # output from our model has batch_loss by default
217
+ batch_loss = output.batch_loss
218
+ else:
219
+ # output from other models does not
220
+ loss, batch_loss, token_loss = compute_loss(output.logits, x["labels"], shift=True)
221
+
222
+ if accelerator is not None and accelerator.num_processes > 1:
223
+ # num_device * batch_size
224
+ index = accelerator.gather_for_metrics(index)
225
+ batch_loss = accelerator.gather_for_metrics(batch_loss)
226
+ valid_token_num = accelerator.gather_for_metrics(valid_token_num)
227
+
228
+ for _id, _loss in zip(index.tolist(), batch_loss.tolist()):
229
+ # loss times num is the total loss of all valid tokens
230
+ all_loss[_id].append(_loss)
231
+
232
+ return all_loss
233
+
234
+
235
+ @dataclass
236
+ class ModelOutput(BaseModelOutputWithPast):
237
+ loss: Optional[torch.FloatTensor] = None
238
+ batch_loss: Optional[torch.FloatTensor] = None
239
+ token_loss: Optional[torch.FloatTensor] = None
240
+ logits: torch.FloatTensor = None
241
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
242
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
243
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
244
+
245
+
246
+
247
+ ########## Various RoPE Scaling Methods Below (wrap the encoding process within the module for convenience) ##########
248
+
249
+ def get_rope(head_dim, base, max_position_embeddings, rope_scaling=None):
250
+ """
251
+ Get rope module. {native, linear scaling, dynamic ntk scaling, yarn scaling, llama3 scaling}
252
+ """
253
+ if rope_scaling is None:
254
+ rope = RotaryEmbedding(
255
+ dim=head_dim,
256
+ base=base,
257
+ max_position_embeddings=max_position_embeddings,
258
+ )
259
+ else:
260
+ scaling_type = rope_scaling["type"]
261
+ scaling_factor = rope_scaling["factor"]
262
+ if scaling_type == "linear":
263
+ rope = LinearScalingRotaryEmbedding(
264
+ dim=head_dim,
265
+ base=base,
266
+ max_position_embeddings=max_position_embeddings,
267
+ scaling_factor=scaling_factor,
268
+ )
269
+ elif scaling_type == "dynamic":
270
+ rope = DynamicNTKScalingRotaryEmbedding(
271
+ dim=head_dim,
272
+ base=base,
273
+ max_position_embeddings=max_position_embeddings,
274
+ scaling_factor=scaling_factor,
275
+ )
276
+ elif scaling_type == "yarn":
277
+ rope = YarnRotaryEmbedding(
278
+ dim=head_dim,
279
+ base=base,
280
+ max_position_embeddings=max_position_embeddings,
281
+ scaling_factor=scaling_factor,
282
+ )
283
+ elif scaling_type == "yarn-t":
284
+ rope = YarnDynamicTemperatureRotaryEmbedding(
285
+ dim=head_dim,
286
+ base=base,
287
+ max_position_embeddings=max_position_embeddings,
288
+ scaling_factor=scaling_factor,
289
+ )
290
+ elif scaling_type == "yarn-t-logn":
291
+ rope = YarnDynamicTemperatureLogNRotaryEmbedding(
292
+ dim=head_dim,
293
+ base=base,
294
+ max_position_embeddings=max_position_embeddings,
295
+ scaling_factor=scaling_factor,
296
+ )
297
+ elif scaling_type == "llama3":
298
+ rope = Llama3RotaryEmbedding(
299
+ dim=head_dim,
300
+ base=base,
301
+ max_position_embeddings=max_position_embeddings,
302
+ scaling_factor=scaling_factor,
303
+ original_max_position_embeddings=rope_scaling.get("original_max_position_embeddings", 8192),
304
+ low_freq_factor=rope_scaling.get("low_freq_factor", 1),
305
+ high_freq_factor=rope_scaling.get("high_freq_factor", 4),
306
+ )
307
+ else:
308
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
309
+
310
+ return rope
311
+
312
+
313
+ def rotate_half(x):
314
+ """Rotates half the hidden dims of the input."""
315
+ x1 = x[..., : x.shape[-1] // 2]
316
+ x2 = x[..., x.shape[-1] // 2 :]
317
+ return torch.cat((-x2, x1), dim=-1)
318
+
319
+
320
+ class RotaryEmbedding(torch.nn.Module):
321
+ def __init__(self, dim, max_position_embeddings=32768, base=10000, device=None):
322
+ super().__init__()
323
+
324
+ self.dim = dim
325
+ self.max_position_embeddings = max_position_embeddings
326
+ self.base = base
327
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.float32).to(device) / self.dim))
328
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
329
+
330
+ # Build here to make `torch.jit.trace` work.
331
+ self._set_cos_sin_cache(
332
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
333
+ )
334
+
335
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
336
+ self.max_seq_len_cached = seq_len
337
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
338
+ freqs = torch.outer(t, self.inv_freq)
339
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
340
+ emb = torch.cat((freqs, freqs), dim=-1)
341
+ self.register_buffer("cos_cached", emb.cos(), persistent=False)
342
+ self.register_buffer("sin_cached", emb.sin(), persistent=False)
343
+
344
+ def forward(self, q, k, position_ids):
345
+ seq_len = max(position_ids.max().item() + 1, k.shape[2])
346
+
347
+ # x: [bs, num_attention_heads, seq_len, head_size]
348
+ if seq_len > self.max_seq_len_cached:
349
+ self._set_cos_sin_cache(seq_len=seq_len, device=k.device, dtype=k.dtype)
350
+
351
+ # batch_size, 1, key_len, head_dim
352
+ k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
353
+ k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
354
+
355
+ q_cos = k_cos[..., -q.shape[2]:, :]
356
+ q_sin = k_sin[..., -q.shape[2]:, :]
357
+
358
+ q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
359
+ k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
360
+ return q_embed, k_embed
361
+
362
+
363
+ class LinearScalingRotaryEmbedding(RotaryEmbedding):
364
+ """RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
365
+
366
+ def __init__(self, dim, max_position_embeddings=32768, base=10000, device=None, scaling_factor=1.0):
367
+ self.scaling_factor = scaling_factor
368
+ super().__init__(dim, max_position_embeddings, base, device)
369
+
370
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
371
+ self.max_seq_len_cached = seq_len
372
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
373
+ t = t / self.scaling_factor
374
+
375
+ freqs = torch.outer(t, self.inv_freq)
376
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
377
+ emb = torch.cat((freqs, freqs), dim=-1)
378
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
379
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
380
+
381
+
382
+ class DynamicNTKScalingRotaryEmbedding(RotaryEmbedding):
383
+ """RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
384
+
385
+ def __init__(self, dim, max_position_embeddings=32768, base=10000, device=None, scaling_factor=1.0):
386
+ self.scaling_factor = scaling_factor
387
+ super().__init__(dim, max_position_embeddings, base, device)
388
+
389
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
390
+ self.max_seq_len_cached = seq_len
391
+
392
+ if seq_len > self.max_position_embeddings:
393
+ base = self.base * (
394
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
395
+ ) ** (self.dim / (self.dim - 2))
396
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.float32).to(device) / self.dim))
397
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
398
+
399
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
400
+
401
+ freqs = torch.outer(t, self.inv_freq)
402
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
403
+ emb = torch.cat((freqs, freqs), dim=-1)
404
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
405
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
406
+
407
+
408
+ class YarnRotaryEmbedding(torch.nn.Module):
409
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0, beta_slow=2, beta_fast=128):
410
+ super().__init__()
411
+
412
+ self.base = base
413
+ self.dim = dim
414
+ self.scaling_factor = scaling_factor
415
+ self.beta_slow = beta_slow
416
+ self.beta_fast = beta_fast
417
+ self.max_position_embeddings = max_position_embeddings
418
+
419
+ self._set_cos_sin_cache(
420
+ seq_len=math.ceil(max_position_embeddings * scaling_factor), device=device, dtype=torch.get_default_dtype()
421
+ )
422
+
423
+ def _get_factor(self):
424
+ # the dimension whose index is smaller than fast_dim rotates more than beta_fast
425
+ fast_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_fast)) / math.log(self.base))
426
+ fast_dim = max(math.floor(fast_dim), 0)
427
+ # the dimension whose index is bigger than slow_dim rotates less than beta_slow
428
+ slow_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_slow)) / math.log(self.base))
429
+ slow_dim = min(math.ceil(slow_dim), self.dim - 1)
430
+
431
+ if fast_dim == slow_dim:
432
+ slow_dim += 0.001
433
+
434
+ # NOTE: very important to use full precision here so that the factor is correct
435
+ dim_arange = torch.arange(0, self.dim // 2, dtype=torch.float32)
436
+ dim_factor = (dim_arange - fast_dim) / (slow_dim - fast_dim)
437
+ dim_factor = torch.clamp(dim_factor, 0, 1)
438
+
439
+ # align with the paper notation
440
+ return (1 - dim_factor)
441
+
442
+ def _get_temperature(self):
443
+ if self.scaling_factor <= 1:
444
+ return 1.0
445
+ return 0.07 * math.log(self.scaling_factor) + 1.0
446
+
447
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
448
+ dim_arange = torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim
449
+ # dim / 2
450
+ freq = self.base ** dim_arange
451
+ theta = 1 / freq
452
+ interleave_theta = theta / self.scaling_factor
453
+
454
+ factor = self._get_factor().to(device)
455
+ yarn_theta = factor * theta + (1 - factor) * interleave_theta
456
+ self.register_buffer("inv_freq", yarn_theta, persistent=False)
457
+
458
+ t = torch.arange(seq_len, device=device, dtype=torch.float32)
459
+ freqs = torch.outer(t, self.inv_freq)
460
+ emb = torch.cat((freqs, freqs), dim=-1)
461
+
462
+ # get attention temperature
463
+ temperature = self._get_temperature()
464
+
465
+ self.register_buffer("cos_cached", emb.cos() * temperature, persistent=False)
466
+ self.register_buffer("sin_cached", emb.sin() * temperature, persistent=False)
467
+ self.max_seq_len_cached = seq_len
468
+
469
+ def forward(self, q, k, position_ids):
470
+ seq_len = max(position_ids.max().item() + 1, k.shape[2])
471
+
472
+ # x: [bs, num_attention_heads, seq_len, head_size]
473
+ if seq_len > self.max_seq_len_cached:
474
+ self.scaling_factor = seq_len / self.max_position_embeddings
475
+ self._set_cos_sin_cache(seq_len=seq_len, device=k.device, dtype=k.dtype)
476
+
477
+ k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
478
+ k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
479
+
480
+ q_cos = k_cos[..., -q.shape[2]:, :]
481
+ q_sin = k_sin[..., -q.shape[2]:, :]
482
+
483
+ q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
484
+ k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
485
+ return q_embed, k_embed
486
+
487
+
488
+ class YarnDynamicTemperatureRotaryEmbedding(torch.nn.Module):
489
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0, beta_slow=2, beta_fast=128):
490
+ super().__init__()
491
+
492
+ self.base = base
493
+ self.dim = dim
494
+ self.scaling_factor = scaling_factor
495
+ self.beta_slow = beta_slow
496
+ self.beta_fast = beta_fast
497
+ self.max_position_embeddings = max_position_embeddings
498
+
499
+ self._set_cos_sin_cache(
500
+ seq_len=math.ceil(max_position_embeddings * scaling_factor), device=device, dtype=torch.get_default_dtype()
501
+ )
502
+
503
+ def _get_factor(self):
504
+ # the dimension whose index is smaller than fast_dim rotates more than beta_fast
505
+ fast_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_fast)) / math.log(self.base))
506
+ fast_dim = max(math.floor(fast_dim), 0)
507
+ # the dimension whose index is bigger than slow_dim rotates less than beta_slow
508
+ slow_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_slow)) / math.log(self.base))
509
+ slow_dim = min(math.ceil(slow_dim), self.dim - 1)
510
+
511
+ if fast_dim == slow_dim:
512
+ slow_dim += 0.001
513
+
514
+ # NOTE: very important to use full precision here so that the factor is correct
515
+ dim_arange = torch.arange(0, self.dim // 2, dtype=torch.float32)
516
+ dim_factor = (dim_arange - fast_dim) / (slow_dim - fast_dim)
517
+ dim_factor = torch.clamp(dim_factor, 0, 1)
518
+
519
+ # align with the paper notation
520
+ return (1 - dim_factor)
521
+
522
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
523
+ dim_arange = torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim
524
+ # dim / 2
525
+ freq = self.base ** dim_arange
526
+ theta = 1 / freq
527
+ interleave_theta = theta / self.scaling_factor
528
+
529
+ factor = self._get_factor().to(device)
530
+ yarn_theta = factor * theta + (1 - factor) * interleave_theta
531
+ self.register_buffer("inv_freq", yarn_theta, persistent=False)
532
+
533
+ positions = torch.arange(seq_len, device=device, dtype=torch.float32)
534
+ freqs = torch.outer(positions, self.inv_freq)
535
+ emb = torch.cat((freqs, freqs), dim=-1)
536
+
537
+ # NOTE: get attention temperature that will be applied on the query vector
538
+ # temperature = torch.log(positions + 1) / math.log(self.max_position_embeddings)
539
+ temperature = (0.07 * torch.log((positions + 1) / self.max_position_embeddings) + 1) ** 2
540
+ temperature[:self.max_position_embeddings] = 1
541
+ self.register_buffer("temperature", temperature.unsqueeze(1), persistent=False)
542
+
543
+ self.register_buffer("cos_cached", emb.cos(), persistent=False)
544
+ self.register_buffer("sin_cached", emb.sin(), persistent=False)
545
+ self.max_seq_len_cached = seq_len
546
+
547
+ def forward(self, q, k, position_ids):
548
+ seq_len = max(position_ids.max().item() + 1, k.shape[2])
549
+
550
+ # x: [bs, num_attention_heads, seq_len, head_size]
551
+ if seq_len > self.max_seq_len_cached:
552
+ self.scaling_factor = seq_len / self.max_position_embeddings
553
+ self._set_cos_sin_cache(seq_len=seq_len, device=k.device, dtype=k.dtype)
554
+
555
+ # batch_size, 1, key_len, head_dim
556
+ k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
557
+ k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
558
+
559
+ q_cos = k_cos[..., -q.shape[2]:, :]
560
+ q_sin = k_sin[..., -q.shape[2]:, :]
561
+
562
+ q_position_ids = position_ids[:, -q.shape[2]:]
563
+ temperature = self.temperature[q_position_ids].to(dtype=k.dtype).unsqueeze(1)
564
+ q_cos = q_cos * temperature
565
+ q_sin = q_sin * temperature
566
+
567
+ q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
568
+ k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
569
+ return q_embed, k_embed
570
+
571
+
572
+ class YarnDynamicTemperatureLogNRotaryEmbedding(torch.nn.Module):
573
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0, beta_slow=2, beta_fast=128):
574
+ super().__init__()
575
+
576
+ self.base = base
577
+ self.dim = dim
578
+ self.scaling_factor = scaling_factor
579
+ self.beta_slow = beta_slow
580
+ self.beta_fast = beta_fast
581
+ self.max_position_embeddings = max_position_embeddings
582
+
583
+ self._set_cos_sin_cache(
584
+ seq_len=math.ceil(max_position_embeddings * scaling_factor), device=device, dtype=torch.get_default_dtype()
585
+ )
586
+
587
+ def _get_factor(self):
588
+ # the dimension whose index is smaller than fast_dim rotates more than beta_fast
589
+ fast_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_fast)) / math.log(self.base))
590
+ fast_dim = max(math.floor(fast_dim), 0)
591
+ # the dimension whose index is bigger than slow_dim rotates less than beta_slow
592
+ slow_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_slow)) / math.log(self.base))
593
+ slow_dim = min(math.ceil(slow_dim), self.dim - 1)
594
+
595
+ if fast_dim == slow_dim:
596
+ slow_dim += 0.001
597
+
598
+ # NOTE: very important to use full precision here so that the factor is correct
599
+ dim_arange = torch.arange(0, self.dim // 2, dtype=torch.float32)
600
+ dim_factor = (dim_arange - fast_dim) / (slow_dim - fast_dim)
601
+ dim_factor = torch.clamp(dim_factor, 0, 1)
602
+
603
+ # align with the paper notation
604
+ return (1 - dim_factor)
605
+
606
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
607
+ dim_arange = torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim
608
+ # dim / 2
609
+ freq = self.base ** dim_arange
610
+ theta = 1 / freq
611
+ interleave_theta = theta / self.scaling_factor
612
+
613
+ factor = self._get_factor().to(device)
614
+ yarn_theta = factor * theta + (1 - factor) * interleave_theta
615
+ self.register_buffer("inv_freq", yarn_theta, persistent=False)
616
+
617
+ positions = torch.arange(seq_len, device=device, dtype=torch.float32)
618
+ freqs = torch.outer(positions, self.inv_freq)
619
+ emb = torch.cat((freqs, freqs), dim=-1)
620
+
621
+ # NOTE: get attention temperature that will be applied on the query vector
622
+ temperature = torch.log(positions + 1) / math.log(self.max_position_embeddings)
623
+ # temperature = (0.07 * torch.log((positions + 1) / self.max_position_embeddings) + 1) ** 2
624
+ temperature[:self.max_position_embeddings] = 1
625
+ self.register_buffer("temperature", temperature.unsqueeze(1), persistent=False)
626
+
627
+ self.register_buffer("cos_cached", emb.cos(), persistent=False)
628
+ self.register_buffer("sin_cached", emb.sin(), persistent=False)
629
+ self.max_seq_len_cached = seq_len
630
+
631
+ def forward(self, q, k, position_ids):
632
+ seq_len = max(position_ids.max().item() + 1, k.shape[2])
633
+
634
+ # x: [bs, num_attention_heads, seq_len, head_size]
635
+ if seq_len > self.max_seq_len_cached:
636
+ self.scaling_factor = seq_len / self.max_position_embeddings
637
+ self._set_cos_sin_cache(seq_len=seq_len, device=k.device, dtype=k.dtype)
638
+
639
+ # batch_size, 1, key_len, head_dim
640
+ k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
641
+ k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
642
+
643
+ q_cos = k_cos[..., -q.shape[2]:, :]
644
+ q_sin = k_sin[..., -q.shape[2]:, :]
645
+
646
+ q_position_ids = position_ids[:, -q.shape[2]:]
647
+ temperature = self.temperature[q_position_ids].to(dtype=k.dtype).unsqueeze(1)
648
+ q_cos = q_cos * temperature
649
+ q_sin = q_sin * temperature
650
+
651
+ q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
652
+ k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
653
+ return q_embed, k_embed
654
+
655
+
656
+ class Llama3RotaryEmbedding(torch.nn.Module):
657
+ def __init__(self, dim, max_position_embeddings=8192, base=10000, device=None, scaling_factor=1.0, original_max_position_embeddings=8192, low_freq_factor=1, high_freq_factor=4):
658
+ super().__init__()
659
+
660
+ self.base = base
661
+ self.dim = dim
662
+ self.scaling_factor = scaling_factor
663
+ self.original_max_position_embeddings = original_max_position_embeddings
664
+ self.max_position_embeddings = max(max_position_embeddings, int(original_max_position_embeddings * scaling_factor))
665
+ self.low_freq_factor = low_freq_factor
666
+ self.high_freq_factor = high_freq_factor
667
+
668
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.float32).to(device) / self.dim))
669
+ low_freq_wavelen = self.original_max_position_embeddings / low_freq_factor
670
+ high_freq_wavelen = self.original_max_position_embeddings / high_freq_factor
671
+ new_freqs = []
672
+ for freq in inv_freq:
673
+ wavelen = 2 * math.pi / freq
674
+ if wavelen < high_freq_wavelen:
675
+ new_freqs.append(freq)
676
+ elif wavelen > low_freq_wavelen:
677
+ new_freqs.append(freq / scaling_factor)
678
+ else:
679
+ assert low_freq_wavelen != high_freq_wavelen
680
+ smooth = (self.original_max_position_embeddings / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
681
+ new_freqs.append((1 - smooth) * freq / scaling_factor + smooth * freq)
682
+ inv_freq = torch.tensor(new_freqs, dtype=inv_freq.dtype, device=inv_freq.device)
683
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
684
+
685
+ self._set_cos_sin_cache(seq_len=self.max_position_embeddings, device=device)
686
+
687
+ def _set_cos_sin_cache(self, seq_len, device):
688
+ self.max_seq_len_cached = seq_len
689
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
690
+ freqs = torch.outer(t, self.inv_freq)
691
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
692
+ emb = torch.cat((freqs, freqs), dim=-1)
693
+ self.register_buffer("cos_cached", emb.cos(), persistent=False)
694
+ self.register_buffer("sin_cached", emb.sin(), persistent=False)
695
+
696
+ def forward(self, q, k, position_ids):
697
+ seq_len = max(position_ids.max().item() + 1, k.shape[2])
698
+
699
+ # x: [bs, num_attention_heads, seq_len, head_size]
700
+ if seq_len > self.max_seq_len_cached:
701
+ self._set_cos_sin_cache(seq_len=seq_len, device=k.device)
702
+
703
+ k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
704
+ k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
705
+
706
+ q_cos = k_cos[..., -q.shape[2]:, :]
707
+ q_sin = k_sin[..., -q.shape[2]:, :]
708
+
709
+ q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
710
+ k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
711
+ return q_embed, k_embed
special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|im_end|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|im_end|>",
37
+ "errors": "replace",
38
+ "model_max_length": 131072,
39
+ "pad_token": "<|endoftext|>",
40
+ "padding_side": "left",
41
+ "split_special_tokens": false,
42
+ "tokenizer_class": "Qwen2Tokenizer",
43
+ "unk_token": null
44
+ }
trainer_state.json ADDED
@@ -0,0 +1,1617 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 50,
6
+ "global_step": 11436,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "grad_norm": 0.24680212140083313,
14
+ "learning_rate": 4.979447262550289e-05,
15
+ "loss": 2.1164,
16
+ "step": 50
17
+ },
18
+ {
19
+ "epoch": 0.01,
20
+ "grad_norm": 0.1798873394727707,
21
+ "learning_rate": 4.957582648242085e-05,
22
+ "loss": 2.108,
23
+ "step": 100
24
+ },
25
+ {
26
+ "epoch": 0.01,
27
+ "grad_norm": 0.12875229120254517,
28
+ "learning_rate": 4.9357180339338815e-05,
29
+ "loss": 2.1164,
30
+ "step": 150
31
+ },
32
+ {
33
+ "epoch": 0.02,
34
+ "grad_norm": 0.13966438174247742,
35
+ "learning_rate": 4.913853419625678e-05,
36
+ "loss": 1.975,
37
+ "step": 200
38
+ },
39
+ {
40
+ "epoch": 0.02,
41
+ "grad_norm": 0.14950478076934814,
42
+ "learning_rate": 4.891988805317474e-05,
43
+ "loss": 2.0598,
44
+ "step": 250
45
+ },
46
+ {
47
+ "epoch": 0.03,
48
+ "grad_norm": 0.11292492598295212,
49
+ "learning_rate": 4.8701241910092706e-05,
50
+ "loss": 2.0375,
51
+ "step": 300
52
+ },
53
+ {
54
+ "epoch": 0.03,
55
+ "grad_norm": 0.15274354815483093,
56
+ "learning_rate": 4.848259576701068e-05,
57
+ "loss": 2.0463,
58
+ "step": 350
59
+ },
60
+ {
61
+ "epoch": 0.03,
62
+ "grad_norm": 0.13233616948127747,
63
+ "learning_rate": 4.8263949623928634e-05,
64
+ "loss": 2.0382,
65
+ "step": 400
66
+ },
67
+ {
68
+ "epoch": 0.04,
69
+ "grad_norm": 0.11243890225887299,
70
+ "learning_rate": 4.80453034808466e-05,
71
+ "loss": 2.0239,
72
+ "step": 450
73
+ },
74
+ {
75
+ "epoch": 0.04,
76
+ "grad_norm": 0.12158068269491196,
77
+ "learning_rate": 4.782665733776456e-05,
78
+ "loss": 2.0376,
79
+ "step": 500
80
+ },
81
+ {
82
+ "epoch": 0.05,
83
+ "grad_norm": 0.14348222315311432,
84
+ "learning_rate": 4.7608011194682526e-05,
85
+ "loss": 2.0658,
86
+ "step": 550
87
+ },
88
+ {
89
+ "epoch": 0.05,
90
+ "grad_norm": 0.1698862612247467,
91
+ "learning_rate": 4.738936505160049e-05,
92
+ "loss": 2.0811,
93
+ "step": 600
94
+ },
95
+ {
96
+ "epoch": 0.06,
97
+ "grad_norm": 0.18587234616279602,
98
+ "learning_rate": 4.717071890851846e-05,
99
+ "loss": 2.0649,
100
+ "step": 650
101
+ },
102
+ {
103
+ "epoch": 0.06,
104
+ "grad_norm": 0.1404772698879242,
105
+ "learning_rate": 4.6952072765436424e-05,
106
+ "loss": 2.0424,
107
+ "step": 700
108
+ },
109
+ {
110
+ "epoch": 0.07,
111
+ "grad_norm": 0.13483217358589172,
112
+ "learning_rate": 4.673342662235438e-05,
113
+ "loss": 2.0892,
114
+ "step": 750
115
+ },
116
+ {
117
+ "epoch": 0.07,
118
+ "grad_norm": 0.12589296698570251,
119
+ "learning_rate": 4.6514780479272345e-05,
120
+ "loss": 1.9907,
121
+ "step": 800
122
+ },
123
+ {
124
+ "epoch": 0.07,
125
+ "grad_norm": 0.11405760794878006,
126
+ "learning_rate": 4.629613433619031e-05,
127
+ "loss": 2.0512,
128
+ "step": 850
129
+ },
130
+ {
131
+ "epoch": 0.08,
132
+ "grad_norm": 0.14347495138645172,
133
+ "learning_rate": 4.607748819310827e-05,
134
+ "loss": 2.0381,
135
+ "step": 900
136
+ },
137
+ {
138
+ "epoch": 0.08,
139
+ "grad_norm": 0.14272941648960114,
140
+ "learning_rate": 4.5858842050026244e-05,
141
+ "loss": 2.0089,
142
+ "step": 950
143
+ },
144
+ {
145
+ "epoch": 0.09,
146
+ "grad_norm": 0.11842367798089981,
147
+ "learning_rate": 4.564019590694421e-05,
148
+ "loss": 2.0551,
149
+ "step": 1000
150
+ },
151
+ {
152
+ "epoch": 0.09,
153
+ "grad_norm": 0.14809106290340424,
154
+ "learning_rate": 4.542154976386217e-05,
155
+ "loss": 2.0635,
156
+ "step": 1050
157
+ },
158
+ {
159
+ "epoch": 0.1,
160
+ "grad_norm": 0.17582620680332184,
161
+ "learning_rate": 4.520290362078013e-05,
162
+ "loss": 2.0037,
163
+ "step": 1100
164
+ },
165
+ {
166
+ "epoch": 0.1,
167
+ "grad_norm": 0.15331187844276428,
168
+ "learning_rate": 4.498425747769809e-05,
169
+ "loss": 2.0176,
170
+ "step": 1150
171
+ },
172
+ {
173
+ "epoch": 0.1,
174
+ "grad_norm": 0.1289476752281189,
175
+ "learning_rate": 4.476561133461606e-05,
176
+ "loss": 1.9955,
177
+ "step": 1200
178
+ },
179
+ {
180
+ "epoch": 0.11,
181
+ "grad_norm": 0.12641307711601257,
182
+ "learning_rate": 4.454696519153402e-05,
183
+ "loss": 2.0665,
184
+ "step": 1250
185
+ },
186
+ {
187
+ "epoch": 0.11,
188
+ "grad_norm": 0.1526792198419571,
189
+ "learning_rate": 4.432831904845199e-05,
190
+ "loss": 2.0381,
191
+ "step": 1300
192
+ },
193
+ {
194
+ "epoch": 0.12,
195
+ "grad_norm": 0.15751318633556366,
196
+ "learning_rate": 4.4109672905369955e-05,
197
+ "loss": 2.1066,
198
+ "step": 1350
199
+ },
200
+ {
201
+ "epoch": 0.12,
202
+ "grad_norm": 0.16713933646678925,
203
+ "learning_rate": 4.389102676228792e-05,
204
+ "loss": 2.0773,
205
+ "step": 1400
206
+ },
207
+ {
208
+ "epoch": 0.13,
209
+ "grad_norm": 0.1296485811471939,
210
+ "learning_rate": 4.3672380619205876e-05,
211
+ "loss": 2.0354,
212
+ "step": 1450
213
+ },
214
+ {
215
+ "epoch": 0.13,
216
+ "grad_norm": 0.1575527936220169,
217
+ "learning_rate": 4.345373447612384e-05,
218
+ "loss": 2.057,
219
+ "step": 1500
220
+ },
221
+ {
222
+ "epoch": 0.14,
223
+ "grad_norm": 0.14888359606266022,
224
+ "learning_rate": 4.3235088333041804e-05,
225
+ "loss": 2.0769,
226
+ "step": 1550
227
+ },
228
+ {
229
+ "epoch": 0.14,
230
+ "grad_norm": 0.13250517845153809,
231
+ "learning_rate": 4.3016442189959775e-05,
232
+ "loss": 2.0548,
233
+ "step": 1600
234
+ },
235
+ {
236
+ "epoch": 0.14,
237
+ "grad_norm": 0.11338368058204651,
238
+ "learning_rate": 4.279779604687774e-05,
239
+ "loss": 2.0733,
240
+ "step": 1650
241
+ },
242
+ {
243
+ "epoch": 0.15,
244
+ "grad_norm": 0.13314321637153625,
245
+ "learning_rate": 4.25791499037957e-05,
246
+ "loss": 2.0927,
247
+ "step": 1700
248
+ },
249
+ {
250
+ "epoch": 0.15,
251
+ "grad_norm": 0.13528186082839966,
252
+ "learning_rate": 4.2360503760713666e-05,
253
+ "loss": 2.0358,
254
+ "step": 1750
255
+ },
256
+ {
257
+ "epoch": 0.16,
258
+ "grad_norm": 0.123367078602314,
259
+ "learning_rate": 4.2141857617631624e-05,
260
+ "loss": 2.122,
261
+ "step": 1800
262
+ },
263
+ {
264
+ "epoch": 0.16,
265
+ "grad_norm": 0.1488184630870819,
266
+ "learning_rate": 4.192321147454959e-05,
267
+ "loss": 2.0561,
268
+ "step": 1850
269
+ },
270
+ {
271
+ "epoch": 0.17,
272
+ "grad_norm": 0.16916592419147491,
273
+ "learning_rate": 4.170456533146755e-05,
274
+ "loss": 2.0353,
275
+ "step": 1900
276
+ },
277
+ {
278
+ "epoch": 0.17,
279
+ "grad_norm": 0.14417660236358643,
280
+ "learning_rate": 4.148591918838552e-05,
281
+ "loss": 1.9982,
282
+ "step": 1950
283
+ },
284
+ {
285
+ "epoch": 0.17,
286
+ "grad_norm": 0.12554995715618134,
287
+ "learning_rate": 4.1267273045303486e-05,
288
+ "loss": 2.1305,
289
+ "step": 2000
290
+ },
291
+ {
292
+ "epoch": 0.18,
293
+ "grad_norm": 0.1197732612490654,
294
+ "learning_rate": 4.104862690222145e-05,
295
+ "loss": 2.0228,
296
+ "step": 2050
297
+ },
298
+ {
299
+ "epoch": 0.18,
300
+ "grad_norm": 0.11664281785488129,
301
+ "learning_rate": 4.0829980759139414e-05,
302
+ "loss": 2.0536,
303
+ "step": 2100
304
+ },
305
+ {
306
+ "epoch": 0.19,
307
+ "grad_norm": 0.1292441338300705,
308
+ "learning_rate": 4.061133461605737e-05,
309
+ "loss": 2.072,
310
+ "step": 2150
311
+ },
312
+ {
313
+ "epoch": 0.19,
314
+ "grad_norm": 0.1317589282989502,
315
+ "learning_rate": 4.0392688472975335e-05,
316
+ "loss": 2.0793,
317
+ "step": 2200
318
+ },
319
+ {
320
+ "epoch": 0.2,
321
+ "grad_norm": 0.14351141452789307,
322
+ "learning_rate": 4.0174042329893305e-05,
323
+ "loss": 2.0527,
324
+ "step": 2250
325
+ },
326
+ {
327
+ "epoch": 0.2,
328
+ "grad_norm": 0.1438673734664917,
329
+ "learning_rate": 3.995539618681127e-05,
330
+ "loss": 2.0586,
331
+ "step": 2300
332
+ },
333
+ {
334
+ "epoch": 0.21,
335
+ "grad_norm": 0.13835753500461578,
336
+ "learning_rate": 3.973675004372923e-05,
337
+ "loss": 2.0294,
338
+ "step": 2350
339
+ },
340
+ {
341
+ "epoch": 0.21,
342
+ "grad_norm": 0.110976442694664,
343
+ "learning_rate": 3.95181039006472e-05,
344
+ "loss": 2.0917,
345
+ "step": 2400
346
+ },
347
+ {
348
+ "epoch": 0.21,
349
+ "grad_norm": 0.11097148805856705,
350
+ "learning_rate": 3.9299457757565154e-05,
351
+ "loss": 2.0185,
352
+ "step": 2450
353
+ },
354
+ {
355
+ "epoch": 0.22,
356
+ "grad_norm": 0.173320472240448,
357
+ "learning_rate": 3.908081161448312e-05,
358
+ "loss": 2.0346,
359
+ "step": 2500
360
+ },
361
+ {
362
+ "epoch": 0.22,
363
+ "grad_norm": 0.10903707146644592,
364
+ "learning_rate": 3.886216547140108e-05,
365
+ "loss": 2.0342,
366
+ "step": 2550
367
+ },
368
+ {
369
+ "epoch": 0.23,
370
+ "grad_norm": 0.1535567194223404,
371
+ "learning_rate": 3.864351932831905e-05,
372
+ "loss": 2.0104,
373
+ "step": 2600
374
+ },
375
+ {
376
+ "epoch": 0.23,
377
+ "grad_norm": 0.13500377535820007,
378
+ "learning_rate": 3.842487318523702e-05,
379
+ "loss": 2.0813,
380
+ "step": 2650
381
+ },
382
+ {
383
+ "epoch": 0.24,
384
+ "grad_norm": 0.1488364040851593,
385
+ "learning_rate": 3.820622704215498e-05,
386
+ "loss": 2.0034,
387
+ "step": 2700
388
+ },
389
+ {
390
+ "epoch": 0.24,
391
+ "grad_norm": 0.14241208136081696,
392
+ "learning_rate": 3.7987580899072945e-05,
393
+ "loss": 2.0316,
394
+ "step": 2750
395
+ },
396
+ {
397
+ "epoch": 0.24,
398
+ "grad_norm": 0.12958261370658875,
399
+ "learning_rate": 3.77689347559909e-05,
400
+ "loss": 2.0108,
401
+ "step": 2800
402
+ },
403
+ {
404
+ "epoch": 0.25,
405
+ "grad_norm": 0.12320134788751602,
406
+ "learning_rate": 3.7550288612908866e-05,
407
+ "loss": 1.9801,
408
+ "step": 2850
409
+ },
410
+ {
411
+ "epoch": 0.25,
412
+ "grad_norm": 0.12050608545541763,
413
+ "learning_rate": 3.7331642469826836e-05,
414
+ "loss": 2.0882,
415
+ "step": 2900
416
+ },
417
+ {
418
+ "epoch": 0.26,
419
+ "grad_norm": 0.1593894511461258,
420
+ "learning_rate": 3.71129963267448e-05,
421
+ "loss": 2.0175,
422
+ "step": 2950
423
+ },
424
+ {
425
+ "epoch": 0.26,
426
+ "grad_norm": 0.13536041975021362,
427
+ "learning_rate": 3.6894350183662764e-05,
428
+ "loss": 2.0235,
429
+ "step": 3000
430
+ },
431
+ {
432
+ "epoch": 0.27,
433
+ "grad_norm": 0.16139154136180878,
434
+ "learning_rate": 3.667570404058073e-05,
435
+ "loss": 2.0379,
436
+ "step": 3050
437
+ },
438
+ {
439
+ "epoch": 0.27,
440
+ "grad_norm": 0.14355123043060303,
441
+ "learning_rate": 3.645705789749869e-05,
442
+ "loss": 2.0232,
443
+ "step": 3100
444
+ },
445
+ {
446
+ "epoch": 0.28,
447
+ "grad_norm": 0.1250680685043335,
448
+ "learning_rate": 3.623841175441665e-05,
449
+ "loss": 2.0238,
450
+ "step": 3150
451
+ },
452
+ {
453
+ "epoch": 0.28,
454
+ "grad_norm": 0.16705290973186493,
455
+ "learning_rate": 3.601976561133461e-05,
456
+ "loss": 2.0823,
457
+ "step": 3200
458
+ },
459
+ {
460
+ "epoch": 0.28,
461
+ "grad_norm": 0.1477033495903015,
462
+ "learning_rate": 3.5801119468252584e-05,
463
+ "loss": 2.0459,
464
+ "step": 3250
465
+ },
466
+ {
467
+ "epoch": 0.29,
468
+ "grad_norm": 0.15941354632377625,
469
+ "learning_rate": 3.558247332517055e-05,
470
+ "loss": 2.0443,
471
+ "step": 3300
472
+ },
473
+ {
474
+ "epoch": 0.29,
475
+ "grad_norm": 0.1715698093175888,
476
+ "learning_rate": 3.536382718208851e-05,
477
+ "loss": 2.0891,
478
+ "step": 3350
479
+ },
480
+ {
481
+ "epoch": 0.3,
482
+ "grad_norm": 0.29363158345222473,
483
+ "learning_rate": 3.5145181039006475e-05,
484
+ "loss": 2.0438,
485
+ "step": 3400
486
+ },
487
+ {
488
+ "epoch": 0.3,
489
+ "grad_norm": 0.1486337035894394,
490
+ "learning_rate": 3.492653489592444e-05,
491
+ "loss": 2.0515,
492
+ "step": 3450
493
+ },
494
+ {
495
+ "epoch": 0.31,
496
+ "grad_norm": 0.12089661508798599,
497
+ "learning_rate": 3.4707888752842396e-05,
498
+ "loss": 2.0669,
499
+ "step": 3500
500
+ },
501
+ {
502
+ "epoch": 0.31,
503
+ "grad_norm": 0.3512625992298126,
504
+ "learning_rate": 3.448924260976037e-05,
505
+ "loss": 2.0875,
506
+ "step": 3550
507
+ },
508
+ {
509
+ "epoch": 0.31,
510
+ "grad_norm": 0.15912899374961853,
511
+ "learning_rate": 3.427059646667833e-05,
512
+ "loss": 2.0583,
513
+ "step": 3600
514
+ },
515
+ {
516
+ "epoch": 0.32,
517
+ "grad_norm": 0.14142446219921112,
518
+ "learning_rate": 3.4051950323596295e-05,
519
+ "loss": 2.0666,
520
+ "step": 3650
521
+ },
522
+ {
523
+ "epoch": 0.32,
524
+ "grad_norm": 0.13084927201271057,
525
+ "learning_rate": 3.383330418051426e-05,
526
+ "loss": 2.1078,
527
+ "step": 3700
528
+ },
529
+ {
530
+ "epoch": 0.33,
531
+ "grad_norm": 0.1620977371931076,
532
+ "learning_rate": 3.361465803743222e-05,
533
+ "loss": 2.0184,
534
+ "step": 3750
535
+ },
536
+ {
537
+ "epoch": 0.33,
538
+ "grad_norm": 0.18495036661624908,
539
+ "learning_rate": 3.3396011894350187e-05,
540
+ "loss": 2.0117,
541
+ "step": 3800
542
+ },
543
+ {
544
+ "epoch": 0.34,
545
+ "grad_norm": 0.14189182221889496,
546
+ "learning_rate": 3.3177365751268144e-05,
547
+ "loss": 2.0641,
548
+ "step": 3850
549
+ },
550
+ {
551
+ "epoch": 0.34,
552
+ "grad_norm": 0.16044092178344727,
553
+ "learning_rate": 3.2958719608186114e-05,
554
+ "loss": 2.0496,
555
+ "step": 3900
556
+ },
557
+ {
558
+ "epoch": 0.35,
559
+ "grad_norm": 0.12184160947799683,
560
+ "learning_rate": 3.274007346510408e-05,
561
+ "loss": 2.0343,
562
+ "step": 3950
563
+ },
564
+ {
565
+ "epoch": 0.35,
566
+ "grad_norm": 0.10508805513381958,
567
+ "learning_rate": 3.252142732202204e-05,
568
+ "loss": 1.9982,
569
+ "step": 4000
570
+ },
571
+ {
572
+ "epoch": 0.35,
573
+ "grad_norm": 0.14695701003074646,
574
+ "learning_rate": 3.2302781178940006e-05,
575
+ "loss": 2.0163,
576
+ "step": 4050
577
+ },
578
+ {
579
+ "epoch": 0.36,
580
+ "grad_norm": 0.2915743291378021,
581
+ "learning_rate": 3.208413503585797e-05,
582
+ "loss": 2.0559,
583
+ "step": 4100
584
+ },
585
+ {
586
+ "epoch": 0.36,
587
+ "grad_norm": 0.16513386368751526,
588
+ "learning_rate": 3.1865488892775934e-05,
589
+ "loss": 2.0771,
590
+ "step": 4150
591
+ },
592
+ {
593
+ "epoch": 0.37,
594
+ "grad_norm": 0.11002013087272644,
595
+ "learning_rate": 3.16468427496939e-05,
596
+ "loss": 2.0516,
597
+ "step": 4200
598
+ },
599
+ {
600
+ "epoch": 0.37,
601
+ "grad_norm": 0.1383182853460312,
602
+ "learning_rate": 3.142819660661186e-05,
603
+ "loss": 2.0783,
604
+ "step": 4250
605
+ },
606
+ {
607
+ "epoch": 0.38,
608
+ "grad_norm": 0.12230634689331055,
609
+ "learning_rate": 3.1209550463529826e-05,
610
+ "loss": 2.0521,
611
+ "step": 4300
612
+ },
613
+ {
614
+ "epoch": 0.38,
615
+ "grad_norm": 0.15650221705436707,
616
+ "learning_rate": 3.099090432044779e-05,
617
+ "loss": 2.0358,
618
+ "step": 4350
619
+ },
620
+ {
621
+ "epoch": 0.38,
622
+ "grad_norm": 0.16002853214740753,
623
+ "learning_rate": 3.0772258177365753e-05,
624
+ "loss": 2.0217,
625
+ "step": 4400
626
+ },
627
+ {
628
+ "epoch": 0.39,
629
+ "grad_norm": 0.13085784018039703,
630
+ "learning_rate": 3.055361203428372e-05,
631
+ "loss": 2.0019,
632
+ "step": 4450
633
+ },
634
+ {
635
+ "epoch": 0.39,
636
+ "grad_norm": 0.11252173781394958,
637
+ "learning_rate": 3.0334965891201685e-05,
638
+ "loss": 2.0142,
639
+ "step": 4500
640
+ },
641
+ {
642
+ "epoch": 0.4,
643
+ "grad_norm": 0.13878273963928223,
644
+ "learning_rate": 3.0116319748119642e-05,
645
+ "loss": 2.0507,
646
+ "step": 4550
647
+ },
648
+ {
649
+ "epoch": 0.4,
650
+ "grad_norm": 0.13026192784309387,
651
+ "learning_rate": 2.9897673605037606e-05,
652
+ "loss": 2.0927,
653
+ "step": 4600
654
+ },
655
+ {
656
+ "epoch": 0.41,
657
+ "grad_norm": 0.12136498093605042,
658
+ "learning_rate": 2.9679027461955573e-05,
659
+ "loss": 2.0314,
660
+ "step": 4650
661
+ },
662
+ {
663
+ "epoch": 0.41,
664
+ "grad_norm": 0.1311144381761551,
665
+ "learning_rate": 2.9460381318873537e-05,
666
+ "loss": 2.0167,
667
+ "step": 4700
668
+ },
669
+ {
670
+ "epoch": 0.42,
671
+ "grad_norm": 0.13698582351207733,
672
+ "learning_rate": 2.92417351757915e-05,
673
+ "loss": 2.0603,
674
+ "step": 4750
675
+ },
676
+ {
677
+ "epoch": 0.42,
678
+ "grad_norm": 0.13138704001903534,
679
+ "learning_rate": 2.9023089032709465e-05,
680
+ "loss": 2.0659,
681
+ "step": 4800
682
+ },
683
+ {
684
+ "epoch": 0.42,
685
+ "grad_norm": 0.13684587180614471,
686
+ "learning_rate": 2.8804442889627432e-05,
687
+ "loss": 2.0426,
688
+ "step": 4850
689
+ },
690
+ {
691
+ "epoch": 0.43,
692
+ "grad_norm": 0.15447795391082764,
693
+ "learning_rate": 2.858579674654539e-05,
694
+ "loss": 2.0724,
695
+ "step": 4900
696
+ },
697
+ {
698
+ "epoch": 0.43,
699
+ "grad_norm": 0.2186385840177536,
700
+ "learning_rate": 2.8367150603463356e-05,
701
+ "loss": 2.0357,
702
+ "step": 4950
703
+ },
704
+ {
705
+ "epoch": 0.44,
706
+ "grad_norm": 0.12155057489871979,
707
+ "learning_rate": 2.814850446038132e-05,
708
+ "loss": 2.062,
709
+ "step": 5000
710
+ },
711
+ {
712
+ "epoch": 0.44,
713
+ "grad_norm": 0.28663524985313416,
714
+ "learning_rate": 2.7929858317299284e-05,
715
+ "loss": 1.9945,
716
+ "step": 5050
717
+ },
718
+ {
719
+ "epoch": 0.45,
720
+ "grad_norm": 0.16327697038650513,
721
+ "learning_rate": 2.7711212174217248e-05,
722
+ "loss": 2.0262,
723
+ "step": 5100
724
+ },
725
+ {
726
+ "epoch": 0.45,
727
+ "grad_norm": 0.11811967194080353,
728
+ "learning_rate": 2.7492566031135215e-05,
729
+ "loss": 1.9902,
730
+ "step": 5150
731
+ },
732
+ {
733
+ "epoch": 0.45,
734
+ "grad_norm": 0.14936485886573792,
735
+ "learning_rate": 2.727391988805318e-05,
736
+ "loss": 1.9835,
737
+ "step": 5200
738
+ },
739
+ {
740
+ "epoch": 0.46,
741
+ "grad_norm": 0.12473815679550171,
742
+ "learning_rate": 2.7055273744971136e-05,
743
+ "loss": 2.0101,
744
+ "step": 5250
745
+ },
746
+ {
747
+ "epoch": 0.46,
748
+ "grad_norm": 0.12709933519363403,
749
+ "learning_rate": 2.6836627601889104e-05,
750
+ "loss": 2.0394,
751
+ "step": 5300
752
+ },
753
+ {
754
+ "epoch": 0.47,
755
+ "grad_norm": 0.2092856615781784,
756
+ "learning_rate": 2.6617981458807068e-05,
757
+ "loss": 2.0482,
758
+ "step": 5350
759
+ },
760
+ {
761
+ "epoch": 0.47,
762
+ "grad_norm": 0.10988406836986542,
763
+ "learning_rate": 2.639933531572503e-05,
764
+ "loss": 2.0043,
765
+ "step": 5400
766
+ },
767
+ {
768
+ "epoch": 0.48,
769
+ "grad_norm": 0.11755118519067764,
770
+ "learning_rate": 2.6180689172642995e-05,
771
+ "loss": 2.04,
772
+ "step": 5450
773
+ },
774
+ {
775
+ "epoch": 0.48,
776
+ "grad_norm": 0.12184648215770721,
777
+ "learning_rate": 2.5962043029560963e-05,
778
+ "loss": 2.0741,
779
+ "step": 5500
780
+ },
781
+ {
782
+ "epoch": 0.49,
783
+ "grad_norm": 0.19833241403102875,
784
+ "learning_rate": 2.574339688647892e-05,
785
+ "loss": 2.0551,
786
+ "step": 5550
787
+ },
788
+ {
789
+ "epoch": 0.49,
790
+ "grad_norm": 0.1213446855545044,
791
+ "learning_rate": 2.5524750743396887e-05,
792
+ "loss": 2.0349,
793
+ "step": 5600
794
+ },
795
+ {
796
+ "epoch": 0.49,
797
+ "grad_norm": 0.10714009404182434,
798
+ "learning_rate": 2.530610460031485e-05,
799
+ "loss": 1.9495,
800
+ "step": 5650
801
+ },
802
+ {
803
+ "epoch": 0.5,
804
+ "grad_norm": 0.11714328825473785,
805
+ "learning_rate": 2.5087458457232815e-05,
806
+ "loss": 2.0051,
807
+ "step": 5700
808
+ },
809
+ {
810
+ "epoch": 0.5,
811
+ "grad_norm": 0.14028282463550568,
812
+ "learning_rate": 2.486881231415078e-05,
813
+ "loss": 2.0059,
814
+ "step": 5750
815
+ },
816
+ {
817
+ "epoch": 0.51,
818
+ "grad_norm": 0.11705906689167023,
819
+ "learning_rate": 2.4650166171068746e-05,
820
+ "loss": 2.0374,
821
+ "step": 5800
822
+ },
823
+ {
824
+ "epoch": 0.51,
825
+ "grad_norm": 0.15596671402454376,
826
+ "learning_rate": 2.4431520027986707e-05,
827
+ "loss": 2.0238,
828
+ "step": 5850
829
+ },
830
+ {
831
+ "epoch": 0.52,
832
+ "grad_norm": 0.13032393157482147,
833
+ "learning_rate": 2.421287388490467e-05,
834
+ "loss": 2.0565,
835
+ "step": 5900
836
+ },
837
+ {
838
+ "epoch": 0.52,
839
+ "grad_norm": 0.14617374539375305,
840
+ "learning_rate": 2.3994227741822638e-05,
841
+ "loss": 2.0515,
842
+ "step": 5950
843
+ },
844
+ {
845
+ "epoch": 0.52,
846
+ "grad_norm": 0.156155064702034,
847
+ "learning_rate": 2.37755815987406e-05,
848
+ "loss": 2.0327,
849
+ "step": 6000
850
+ },
851
+ {
852
+ "epoch": 0.53,
853
+ "grad_norm": 0.11759106069803238,
854
+ "learning_rate": 2.3556935455658562e-05,
855
+ "loss": 2.0721,
856
+ "step": 6050
857
+ },
858
+ {
859
+ "epoch": 0.53,
860
+ "grad_norm": 0.1545974314212799,
861
+ "learning_rate": 2.3338289312576526e-05,
862
+ "loss": 1.9866,
863
+ "step": 6100
864
+ },
865
+ {
866
+ "epoch": 0.54,
867
+ "grad_norm": 0.13251113891601562,
868
+ "learning_rate": 2.3119643169494493e-05,
869
+ "loss": 2.0147,
870
+ "step": 6150
871
+ },
872
+ {
873
+ "epoch": 0.54,
874
+ "grad_norm": 0.1533696949481964,
875
+ "learning_rate": 2.2900997026412454e-05,
876
+ "loss": 2.0267,
877
+ "step": 6200
878
+ },
879
+ {
880
+ "epoch": 0.55,
881
+ "grad_norm": 0.12238262593746185,
882
+ "learning_rate": 2.2682350883330418e-05,
883
+ "loss": 2.0202,
884
+ "step": 6250
885
+ },
886
+ {
887
+ "epoch": 0.55,
888
+ "grad_norm": 0.13370424509048462,
889
+ "learning_rate": 2.2463704740248385e-05,
890
+ "loss": 2.0542,
891
+ "step": 6300
892
+ },
893
+ {
894
+ "epoch": 0.56,
895
+ "grad_norm": 0.135158509016037,
896
+ "learning_rate": 2.2245058597166346e-05,
897
+ "loss": 2.0228,
898
+ "step": 6350
899
+ },
900
+ {
901
+ "epoch": 0.56,
902
+ "grad_norm": 0.1633879691362381,
903
+ "learning_rate": 2.202641245408431e-05,
904
+ "loss": 2.014,
905
+ "step": 6400
906
+ },
907
+ {
908
+ "epoch": 0.56,
909
+ "grad_norm": 0.14239120483398438,
910
+ "learning_rate": 2.1807766311002277e-05,
911
+ "loss": 2.1116,
912
+ "step": 6450
913
+ },
914
+ {
915
+ "epoch": 0.57,
916
+ "grad_norm": 0.15084555745124817,
917
+ "learning_rate": 2.1589120167920237e-05,
918
+ "loss": 2.0803,
919
+ "step": 6500
920
+ },
921
+ {
922
+ "epoch": 0.57,
923
+ "grad_norm": 0.12641365826129913,
924
+ "learning_rate": 2.13704740248382e-05,
925
+ "loss": 2.0501,
926
+ "step": 6550
927
+ },
928
+ {
929
+ "epoch": 0.58,
930
+ "grad_norm": 0.18917310237884521,
931
+ "learning_rate": 2.115182788175617e-05,
932
+ "loss": 2.0069,
933
+ "step": 6600
934
+ },
935
+ {
936
+ "epoch": 0.58,
937
+ "grad_norm": 0.1685107797384262,
938
+ "learning_rate": 2.0933181738674133e-05,
939
+ "loss": 2.0559,
940
+ "step": 6650
941
+ },
942
+ {
943
+ "epoch": 0.59,
944
+ "grad_norm": 0.1830686628818512,
945
+ "learning_rate": 2.0714535595592093e-05,
946
+ "loss": 2.0366,
947
+ "step": 6700
948
+ },
949
+ {
950
+ "epoch": 0.59,
951
+ "grad_norm": 0.11661963164806366,
952
+ "learning_rate": 2.0495889452510057e-05,
953
+ "loss": 2.0451,
954
+ "step": 6750
955
+ },
956
+ {
957
+ "epoch": 0.59,
958
+ "grad_norm": 0.15775232017040253,
959
+ "learning_rate": 2.0277243309428024e-05,
960
+ "loss": 2.0785,
961
+ "step": 6800
962
+ },
963
+ {
964
+ "epoch": 0.6,
965
+ "grad_norm": 0.1487419754266739,
966
+ "learning_rate": 2.0058597166345985e-05,
967
+ "loss": 2.0231,
968
+ "step": 6850
969
+ },
970
+ {
971
+ "epoch": 0.6,
972
+ "grad_norm": 0.11676029115915298,
973
+ "learning_rate": 1.983995102326395e-05,
974
+ "loss": 2.0444,
975
+ "step": 6900
976
+ },
977
+ {
978
+ "epoch": 0.61,
979
+ "grad_norm": 0.16297248005867004,
980
+ "learning_rate": 1.9621304880181916e-05,
981
+ "loss": 2.0288,
982
+ "step": 6950
983
+ },
984
+ {
985
+ "epoch": 0.61,
986
+ "grad_norm": 0.10936591029167175,
987
+ "learning_rate": 1.940265873709988e-05,
988
+ "loss": 2.0973,
989
+ "step": 7000
990
+ },
991
+ {
992
+ "epoch": 0.62,
993
+ "grad_norm": 0.13290850818157196,
994
+ "learning_rate": 1.918401259401784e-05,
995
+ "loss": 2.0536,
996
+ "step": 7050
997
+ },
998
+ {
999
+ "epoch": 0.62,
1000
+ "grad_norm": 0.1514565795660019,
1001
+ "learning_rate": 1.8965366450935808e-05,
1002
+ "loss": 1.9953,
1003
+ "step": 7100
1004
+ },
1005
+ {
1006
+ "epoch": 0.63,
1007
+ "grad_norm": 0.14755938947200775,
1008
+ "learning_rate": 1.874672030785377e-05,
1009
+ "loss": 2.0123,
1010
+ "step": 7150
1011
+ },
1012
+ {
1013
+ "epoch": 0.63,
1014
+ "grad_norm": 0.14362554252147675,
1015
+ "learning_rate": 1.8528074164771732e-05,
1016
+ "loss": 2.0726,
1017
+ "step": 7200
1018
+ },
1019
+ {
1020
+ "epoch": 0.63,
1021
+ "grad_norm": 0.13935257494449615,
1022
+ "learning_rate": 1.83094280216897e-05,
1023
+ "loss": 2.0586,
1024
+ "step": 7250
1025
+ },
1026
+ {
1027
+ "epoch": 0.64,
1028
+ "grad_norm": 0.17782963812351227,
1029
+ "learning_rate": 1.8090781878607663e-05,
1030
+ "loss": 2.0021,
1031
+ "step": 7300
1032
+ },
1033
+ {
1034
+ "epoch": 0.64,
1035
+ "grad_norm": 0.11529221385717392,
1036
+ "learning_rate": 1.7872135735525627e-05,
1037
+ "loss": 2.0405,
1038
+ "step": 7350
1039
+ },
1040
+ {
1041
+ "epoch": 0.65,
1042
+ "grad_norm": 0.20195411145687103,
1043
+ "learning_rate": 1.765348959244359e-05,
1044
+ "loss": 2.0568,
1045
+ "step": 7400
1046
+ },
1047
+ {
1048
+ "epoch": 0.65,
1049
+ "grad_norm": 0.1562044322490692,
1050
+ "learning_rate": 1.7434843449361555e-05,
1051
+ "loss": 2.0669,
1052
+ "step": 7450
1053
+ },
1054
+ {
1055
+ "epoch": 0.66,
1056
+ "grad_norm": 0.1276342272758484,
1057
+ "learning_rate": 1.721619730627952e-05,
1058
+ "loss": 2.0323,
1059
+ "step": 7500
1060
+ },
1061
+ {
1062
+ "epoch": 0.66,
1063
+ "grad_norm": 0.12369738519191742,
1064
+ "learning_rate": 1.699755116319748e-05,
1065
+ "loss": 2.0451,
1066
+ "step": 7550
1067
+ },
1068
+ {
1069
+ "epoch": 0.66,
1070
+ "grad_norm": 0.12338880449533463,
1071
+ "learning_rate": 1.6778905020115447e-05,
1072
+ "loss": 2.0672,
1073
+ "step": 7600
1074
+ },
1075
+ {
1076
+ "epoch": 0.67,
1077
+ "grad_norm": 0.1343850940465927,
1078
+ "learning_rate": 1.656025887703341e-05,
1079
+ "loss": 2.0319,
1080
+ "step": 7650
1081
+ },
1082
+ {
1083
+ "epoch": 0.67,
1084
+ "grad_norm": 0.11484856903553009,
1085
+ "learning_rate": 1.6341612733951375e-05,
1086
+ "loss": 2.0128,
1087
+ "step": 7700
1088
+ },
1089
+ {
1090
+ "epoch": 0.68,
1091
+ "grad_norm": 0.1755642592906952,
1092
+ "learning_rate": 1.612296659086934e-05,
1093
+ "loss": 2.0056,
1094
+ "step": 7750
1095
+ },
1096
+ {
1097
+ "epoch": 0.68,
1098
+ "grad_norm": 0.1479136049747467,
1099
+ "learning_rate": 1.5904320447787302e-05,
1100
+ "loss": 2.0359,
1101
+ "step": 7800
1102
+ },
1103
+ {
1104
+ "epoch": 0.69,
1105
+ "grad_norm": 0.14136551320552826,
1106
+ "learning_rate": 1.5685674304705266e-05,
1107
+ "loss": 2.0306,
1108
+ "step": 7850
1109
+ },
1110
+ {
1111
+ "epoch": 0.69,
1112
+ "grad_norm": 0.24016603827476501,
1113
+ "learning_rate": 1.546702816162323e-05,
1114
+ "loss": 2.0095,
1115
+ "step": 7900
1116
+ },
1117
+ {
1118
+ "epoch": 0.7,
1119
+ "grad_norm": 0.1085515171289444,
1120
+ "learning_rate": 1.5248382018541194e-05,
1121
+ "loss": 2.0747,
1122
+ "step": 7950
1123
+ },
1124
+ {
1125
+ "epoch": 0.7,
1126
+ "grad_norm": 0.10604669898748398,
1127
+ "learning_rate": 1.5029735875459158e-05,
1128
+ "loss": 1.9993,
1129
+ "step": 8000
1130
+ },
1131
+ {
1132
+ "epoch": 0.7,
1133
+ "grad_norm": 0.12853656709194183,
1134
+ "learning_rate": 1.481108973237712e-05,
1135
+ "loss": 2.08,
1136
+ "step": 8050
1137
+ },
1138
+ {
1139
+ "epoch": 0.71,
1140
+ "grad_norm": 0.13124075531959534,
1141
+ "learning_rate": 1.4592443589295086e-05,
1142
+ "loss": 2.0017,
1143
+ "step": 8100
1144
+ },
1145
+ {
1146
+ "epoch": 0.71,
1147
+ "grad_norm": 0.12069742381572723,
1148
+ "learning_rate": 1.437379744621305e-05,
1149
+ "loss": 2.0255,
1150
+ "step": 8150
1151
+ },
1152
+ {
1153
+ "epoch": 0.72,
1154
+ "grad_norm": 0.17367246747016907,
1155
+ "learning_rate": 1.4155151303131015e-05,
1156
+ "loss": 1.977,
1157
+ "step": 8200
1158
+ },
1159
+ {
1160
+ "epoch": 0.72,
1161
+ "grad_norm": 0.17460305988788605,
1162
+ "learning_rate": 1.3936505160048976e-05,
1163
+ "loss": 2.0414,
1164
+ "step": 8250
1165
+ },
1166
+ {
1167
+ "epoch": 0.73,
1168
+ "grad_norm": 0.11902675032615662,
1169
+ "learning_rate": 1.3717859016966941e-05,
1170
+ "loss": 2.0401,
1171
+ "step": 8300
1172
+ },
1173
+ {
1174
+ "epoch": 0.73,
1175
+ "grad_norm": 0.1274511069059372,
1176
+ "learning_rate": 1.3499212873884905e-05,
1177
+ "loss": 2.0513,
1178
+ "step": 8350
1179
+ },
1180
+ {
1181
+ "epoch": 0.73,
1182
+ "grad_norm": 0.12478269636631012,
1183
+ "learning_rate": 1.3280566730802868e-05,
1184
+ "loss": 2.0096,
1185
+ "step": 8400
1186
+ },
1187
+ {
1188
+ "epoch": 0.74,
1189
+ "grad_norm": 0.12884369492530823,
1190
+ "learning_rate": 1.3061920587720833e-05,
1191
+ "loss": 2.0188,
1192
+ "step": 8450
1193
+ },
1194
+ {
1195
+ "epoch": 0.74,
1196
+ "grad_norm": 0.13595916330814362,
1197
+ "learning_rate": 1.2843274444638797e-05,
1198
+ "loss": 2.0259,
1199
+ "step": 8500
1200
+ },
1201
+ {
1202
+ "epoch": 0.75,
1203
+ "grad_norm": 0.17813335359096527,
1204
+ "learning_rate": 1.2624628301556763e-05,
1205
+ "loss": 2.0578,
1206
+ "step": 8550
1207
+ },
1208
+ {
1209
+ "epoch": 0.75,
1210
+ "grad_norm": 0.1450045257806778,
1211
+ "learning_rate": 1.2405982158474727e-05,
1212
+ "loss": 2.0138,
1213
+ "step": 8600
1214
+ },
1215
+ {
1216
+ "epoch": 0.76,
1217
+ "grad_norm": 0.1711457371711731,
1218
+ "learning_rate": 1.2187336015392689e-05,
1219
+ "loss": 1.9998,
1220
+ "step": 8650
1221
+ },
1222
+ {
1223
+ "epoch": 0.76,
1224
+ "grad_norm": 0.13330256938934326,
1225
+ "learning_rate": 1.1968689872310653e-05,
1226
+ "loss": 1.9919,
1227
+ "step": 8700
1228
+ },
1229
+ {
1230
+ "epoch": 0.77,
1231
+ "grad_norm": 0.1473345309495926,
1232
+ "learning_rate": 1.1750043729228617e-05,
1233
+ "loss": 2.071,
1234
+ "step": 8750
1235
+ },
1236
+ {
1237
+ "epoch": 0.77,
1238
+ "grad_norm": 0.16961540281772614,
1239
+ "learning_rate": 1.153139758614658e-05,
1240
+ "loss": 2.0439,
1241
+ "step": 8800
1242
+ },
1243
+ {
1244
+ "epoch": 0.77,
1245
+ "grad_norm": 0.14884643256664276,
1246
+ "learning_rate": 1.1312751443064546e-05,
1247
+ "loss": 2.066,
1248
+ "step": 8850
1249
+ },
1250
+ {
1251
+ "epoch": 0.78,
1252
+ "grad_norm": 0.17238876223564148,
1253
+ "learning_rate": 1.1094105299982508e-05,
1254
+ "loss": 1.9937,
1255
+ "step": 8900
1256
+ },
1257
+ {
1258
+ "epoch": 0.78,
1259
+ "grad_norm": 0.18265317380428314,
1260
+ "learning_rate": 1.0875459156900472e-05,
1261
+ "loss": 2.0032,
1262
+ "step": 8950
1263
+ },
1264
+ {
1265
+ "epoch": 0.79,
1266
+ "grad_norm": 0.14806517958641052,
1267
+ "learning_rate": 1.0656813013818436e-05,
1268
+ "loss": 2.0888,
1269
+ "step": 9000
1270
+ },
1271
+ {
1272
+ "epoch": 0.79,
1273
+ "grad_norm": 0.12588676810264587,
1274
+ "learning_rate": 1.04381668707364e-05,
1275
+ "loss": 2.0247,
1276
+ "step": 9050
1277
+ },
1278
+ {
1279
+ "epoch": 0.8,
1280
+ "grad_norm": 0.1755397915840149,
1281
+ "learning_rate": 1.0219520727654366e-05,
1282
+ "loss": 2.0018,
1283
+ "step": 9100
1284
+ },
1285
+ {
1286
+ "epoch": 0.8,
1287
+ "grad_norm": 0.15915009379386902,
1288
+ "learning_rate": 1.0000874584572328e-05,
1289
+ "loss": 2.0219,
1290
+ "step": 9150
1291
+ },
1292
+ {
1293
+ "epoch": 0.8,
1294
+ "grad_norm": 0.15032340586185455,
1295
+ "learning_rate": 9.782228441490293e-06,
1296
+ "loss": 2.0401,
1297
+ "step": 9200
1298
+ },
1299
+ {
1300
+ "epoch": 0.81,
1301
+ "grad_norm": 0.1431685835123062,
1302
+ "learning_rate": 9.563582298408257e-06,
1303
+ "loss": 2.1078,
1304
+ "step": 9250
1305
+ },
1306
+ {
1307
+ "epoch": 0.81,
1308
+ "grad_norm": 0.16817353665828705,
1309
+ "learning_rate": 9.34493615532622e-06,
1310
+ "loss": 2.0233,
1311
+ "step": 9300
1312
+ },
1313
+ {
1314
+ "epoch": 0.82,
1315
+ "grad_norm": 0.11254491657018661,
1316
+ "learning_rate": 9.126290012244185e-06,
1317
+ "loss": 2.0385,
1318
+ "step": 9350
1319
+ },
1320
+ {
1321
+ "epoch": 0.82,
1322
+ "grad_norm": 0.1725805401802063,
1323
+ "learning_rate": 8.907643869162147e-06,
1324
+ "loss": 2.0767,
1325
+ "step": 9400
1326
+ },
1327
+ {
1328
+ "epoch": 0.83,
1329
+ "grad_norm": 0.15062490105628967,
1330
+ "learning_rate": 8.688997726080113e-06,
1331
+ "loss": 2.0677,
1332
+ "step": 9450
1333
+ },
1334
+ {
1335
+ "epoch": 0.83,
1336
+ "grad_norm": 0.09490929543972015,
1337
+ "learning_rate": 8.470351582998077e-06,
1338
+ "loss": 2.059,
1339
+ "step": 9500
1340
+ },
1341
+ {
1342
+ "epoch": 0.84,
1343
+ "grad_norm": 0.13435165584087372,
1344
+ "learning_rate": 8.25170543991604e-06,
1345
+ "loss": 2.0475,
1346
+ "step": 9550
1347
+ },
1348
+ {
1349
+ "epoch": 0.84,
1350
+ "grad_norm": 0.17339274287223816,
1351
+ "learning_rate": 8.033059296834005e-06,
1352
+ "loss": 2.0018,
1353
+ "step": 9600
1354
+ },
1355
+ {
1356
+ "epoch": 0.84,
1357
+ "grad_norm": 0.18383900821208954,
1358
+ "learning_rate": 7.814413153751967e-06,
1359
+ "loss": 2.0207,
1360
+ "step": 9650
1361
+ },
1362
+ {
1363
+ "epoch": 0.85,
1364
+ "grad_norm": 0.15471112728118896,
1365
+ "learning_rate": 7.5957670106699325e-06,
1366
+ "loss": 2.1015,
1367
+ "step": 9700
1368
+ },
1369
+ {
1370
+ "epoch": 0.85,
1371
+ "grad_norm": 0.13521017134189606,
1372
+ "learning_rate": 7.3771208675878956e-06,
1373
+ "loss": 2.0512,
1374
+ "step": 9750
1375
+ },
1376
+ {
1377
+ "epoch": 0.86,
1378
+ "grad_norm": 0.15841689705848694,
1379
+ "learning_rate": 7.15847472450586e-06,
1380
+ "loss": 2.0085,
1381
+ "step": 9800
1382
+ },
1383
+ {
1384
+ "epoch": 0.86,
1385
+ "grad_norm": 0.16433627903461456,
1386
+ "learning_rate": 6.939828581423824e-06,
1387
+ "loss": 2.0714,
1388
+ "step": 9850
1389
+ },
1390
+ {
1391
+ "epoch": 0.87,
1392
+ "grad_norm": 0.23176471889019012,
1393
+ "learning_rate": 6.721182438341787e-06,
1394
+ "loss": 2.0268,
1395
+ "step": 9900
1396
+ },
1397
+ {
1398
+ "epoch": 0.87,
1399
+ "grad_norm": 0.16546279191970825,
1400
+ "learning_rate": 6.502536295259752e-06,
1401
+ "loss": 2.0405,
1402
+ "step": 9950
1403
+ },
1404
+ {
1405
+ "epoch": 0.87,
1406
+ "grad_norm": 0.1396203637123108,
1407
+ "learning_rate": 6.283890152177715e-06,
1408
+ "loss": 2.0846,
1409
+ "step": 10000
1410
+ },
1411
+ {
1412
+ "epoch": 0.88,
1413
+ "grad_norm": 0.13313227891921997,
1414
+ "learning_rate": 6.06524400909568e-06,
1415
+ "loss": 2.0844,
1416
+ "step": 10050
1417
+ },
1418
+ {
1419
+ "epoch": 0.88,
1420
+ "grad_norm": 0.14923414587974548,
1421
+ "learning_rate": 5.846597866013644e-06,
1422
+ "loss": 2.0501,
1423
+ "step": 10100
1424
+ },
1425
+ {
1426
+ "epoch": 0.89,
1427
+ "grad_norm": 0.12807855010032654,
1428
+ "learning_rate": 5.627951722931608e-06,
1429
+ "loss": 2.0571,
1430
+ "step": 10150
1431
+ },
1432
+ {
1433
+ "epoch": 0.89,
1434
+ "grad_norm": 0.15558409690856934,
1435
+ "learning_rate": 5.4093055798495716e-06,
1436
+ "loss": 2.0353,
1437
+ "step": 10200
1438
+ },
1439
+ {
1440
+ "epoch": 0.9,
1441
+ "grad_norm": 0.1312248706817627,
1442
+ "learning_rate": 5.1906594367675355e-06,
1443
+ "loss": 2.0441,
1444
+ "step": 10250
1445
+ },
1446
+ {
1447
+ "epoch": 0.9,
1448
+ "grad_norm": 0.15154685080051422,
1449
+ "learning_rate": 4.9720132936855e-06,
1450
+ "loss": 2.0675,
1451
+ "step": 10300
1452
+ },
1453
+ {
1454
+ "epoch": 0.91,
1455
+ "grad_norm": 0.1447318196296692,
1456
+ "learning_rate": 4.753367150603463e-06,
1457
+ "loss": 1.9998,
1458
+ "step": 10350
1459
+ },
1460
+ {
1461
+ "epoch": 0.91,
1462
+ "grad_norm": 0.1512334793806076,
1463
+ "learning_rate": 4.534721007521427e-06,
1464
+ "loss": 2.0112,
1465
+ "step": 10400
1466
+ },
1467
+ {
1468
+ "epoch": 0.91,
1469
+ "grad_norm": 0.13242949545383453,
1470
+ "learning_rate": 4.316074864439391e-06,
1471
+ "loss": 2.0191,
1472
+ "step": 10450
1473
+ },
1474
+ {
1475
+ "epoch": 0.92,
1476
+ "grad_norm": 0.13372650742530823,
1477
+ "learning_rate": 4.097428721357356e-06,
1478
+ "loss": 2.0326,
1479
+ "step": 10500
1480
+ },
1481
+ {
1482
+ "epoch": 0.92,
1483
+ "grad_norm": 0.1071472018957138,
1484
+ "learning_rate": 3.87878257827532e-06,
1485
+ "loss": 2.0598,
1486
+ "step": 10550
1487
+ },
1488
+ {
1489
+ "epoch": 0.93,
1490
+ "grad_norm": 0.14204634726047516,
1491
+ "learning_rate": 3.6601364351932836e-06,
1492
+ "loss": 2.0241,
1493
+ "step": 10600
1494
+ },
1495
+ {
1496
+ "epoch": 0.93,
1497
+ "grad_norm": 0.11200432479381561,
1498
+ "learning_rate": 3.441490292111247e-06,
1499
+ "loss": 1.9981,
1500
+ "step": 10650
1501
+ },
1502
+ {
1503
+ "epoch": 0.94,
1504
+ "grad_norm": 0.17016327381134033,
1505
+ "learning_rate": 3.222844149029211e-06,
1506
+ "loss": 1.9943,
1507
+ "step": 10700
1508
+ },
1509
+ {
1510
+ "epoch": 0.94,
1511
+ "grad_norm": 0.15685972571372986,
1512
+ "learning_rate": 3.004198005947175e-06,
1513
+ "loss": 2.0516,
1514
+ "step": 10750
1515
+ },
1516
+ {
1517
+ "epoch": 0.94,
1518
+ "grad_norm": 0.1390787661075592,
1519
+ "learning_rate": 2.7855518628651393e-06,
1520
+ "loss": 2.0148,
1521
+ "step": 10800
1522
+ },
1523
+ {
1524
+ "epoch": 0.95,
1525
+ "grad_norm": 0.1561822146177292,
1526
+ "learning_rate": 2.566905719783103e-06,
1527
+ "loss": 1.9953,
1528
+ "step": 10850
1529
+ },
1530
+ {
1531
+ "epoch": 0.95,
1532
+ "grad_norm": 0.1486501395702362,
1533
+ "learning_rate": 2.348259576701067e-06,
1534
+ "loss": 2.0293,
1535
+ "step": 10900
1536
+ },
1537
+ {
1538
+ "epoch": 0.96,
1539
+ "grad_norm": 0.12501879036426544,
1540
+ "learning_rate": 2.129613433619031e-06,
1541
+ "loss": 2.0506,
1542
+ "step": 10950
1543
+ },
1544
+ {
1545
+ "epoch": 0.96,
1546
+ "grad_norm": 0.12802496552467346,
1547
+ "learning_rate": 1.9109672905369953e-06,
1548
+ "loss": 1.9748,
1549
+ "step": 11000
1550
+ },
1551
+ {
1552
+ "epoch": 0.97,
1553
+ "grad_norm": 0.11280578374862671,
1554
+ "learning_rate": 1.6923211474549588e-06,
1555
+ "loss": 2.0521,
1556
+ "step": 11050
1557
+ },
1558
+ {
1559
+ "epoch": 0.97,
1560
+ "grad_norm": 0.13323938846588135,
1561
+ "learning_rate": 1.473675004372923e-06,
1562
+ "loss": 2.0329,
1563
+ "step": 11100
1564
+ },
1565
+ {
1566
+ "epoch": 0.97,
1567
+ "grad_norm": 0.1350185126066208,
1568
+ "learning_rate": 1.2550288612908868e-06,
1569
+ "loss": 2.0562,
1570
+ "step": 11150
1571
+ },
1572
+ {
1573
+ "epoch": 0.98,
1574
+ "grad_norm": 0.14205139875411987,
1575
+ "learning_rate": 1.036382718208851e-06,
1576
+ "loss": 2.0528,
1577
+ "step": 11200
1578
+ },
1579
+ {
1580
+ "epoch": 0.98,
1581
+ "grad_norm": 0.19515833258628845,
1582
+ "learning_rate": 8.177365751268147e-07,
1583
+ "loss": 1.9489,
1584
+ "step": 11250
1585
+ },
1586
+ {
1587
+ "epoch": 0.99,
1588
+ "grad_norm": 0.15463581681251526,
1589
+ "learning_rate": 5.990904320447787e-07,
1590
+ "loss": 2.0119,
1591
+ "step": 11300
1592
+ },
1593
+ {
1594
+ "epoch": 0.99,
1595
+ "grad_norm": 0.13750217854976654,
1596
+ "learning_rate": 3.8044428896274276e-07,
1597
+ "loss": 2.0552,
1598
+ "step": 11350
1599
+ },
1600
+ {
1601
+ "epoch": 1.0,
1602
+ "grad_norm": 0.1413380652666092,
1603
+ "learning_rate": 1.6179814588070666e-07,
1604
+ "loss": 2.0558,
1605
+ "step": 11400
1606
+ }
1607
+ ],
1608
+ "logging_steps": 50,
1609
+ "max_steps": 11436,
1610
+ "num_input_tokens_seen": 0,
1611
+ "num_train_epochs": 1,
1612
+ "save_steps": 500,
1613
+ "total_flos": 2.4504387448594235e+19,
1614
+ "train_batch_size": 1,
1615
+ "trial_name": null,
1616
+ "trial_params": null
1617
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff