naufalso commited on
Commit
058f47d
1 Parent(s): 162503b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - mit_restaurant
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: distilbert-finetuned-mit-restaurant-ner
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: mit_restaurant
20
+ type: mit_restaurant
21
+ config: mit_restaurant
22
+ split: validation
23
+ args: mit_restaurant
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.776800439802089
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.7983050847457627
31
+ - name: F1
32
+ type: f1
33
+ value: 0.7874059626636947
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9116093286947559
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # distilbert-finetuned-mit-restaurant-ner
43
+
44
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the mit_restaurant dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.3210
47
+ - Precision: 0.7768
48
+ - Recall: 0.7983
49
+ - F1: 0.7874
50
+ - Accuracy: 0.9116
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 2e-05
70
+ - train_batch_size: 8
71
+ - eval_batch_size: 8
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 5
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | 0.6991 | 1.0 | 863 | 0.3478 | 0.7113 | 0.7684 | 0.7387 | 0.8994 |
82
+ | 0.2773 | 2.0 | 1726 | 0.3264 | 0.7533 | 0.7989 | 0.7754 | 0.9063 |
83
+ | 0.2164 | 3.0 | 2589 | 0.3137 | 0.7644 | 0.8045 | 0.7839 | 0.9121 |
84
+ | 0.1789 | 4.0 | 3452 | 0.3163 | 0.7755 | 0.7983 | 0.7867 | 0.9115 |
85
+ | 0.1573 | 5.0 | 4315 | 0.3210 | 0.7768 | 0.7983 | 0.7874 | 0.9116 |
86
+
87
+
88
+ ### Framework versions
89
+
90
+ - Transformers 4.26.1
91
+ - Pytorch 1.13.1+cu116
92
+ - Datasets 2.9.0
93
+ - Tokenizers 0.13.2