--- license: apache-2.0 tags: - generated_from_trainer datasets: - mit_restaurant metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-finetuned-mit-restaurant-ner results: - task: name: Token Classification type: token-classification dataset: name: mit_restaurant type: mit_restaurant config: mit_restaurant split: validation args: mit_restaurant metrics: - name: Precision type: precision value: 0.776800439802089 - name: Recall type: recall value: 0.7983050847457627 - name: F1 type: f1 value: 0.7874059626636947 - name: Accuracy type: accuracy value: 0.9116093286947559 --- # distilbert-finetuned-mit-restaurant-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the mit_restaurant dataset. It achieves the following results on the evaluation set: - Loss: 0.3210 - Precision: 0.7768 - Recall: 0.7983 - F1: 0.7874 - Accuracy: 0.9116 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.6991 | 1.0 | 863 | 0.3478 | 0.7113 | 0.7684 | 0.7387 | 0.8994 | | 0.2773 | 2.0 | 1726 | 0.3264 | 0.7533 | 0.7989 | 0.7754 | 0.9063 | | 0.2164 | 3.0 | 2589 | 0.3137 | 0.7644 | 0.8045 | 0.7839 | 0.9121 | | 0.1789 | 4.0 | 3452 | 0.3163 | 0.7755 | 0.7983 | 0.7867 | 0.9115 | | 0.1573 | 5.0 | 4315 | 0.3210 | 0.7768 | 0.7983 | 0.7874 | 0.9116 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2