File size: 13,789 Bytes
d705c94
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa2776a84c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa2776a8550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa2776a85e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa2776a8670>", "_build": "<function ActorCriticPolicy._build at 0x7fa2776a8700>", "forward": "<function ActorCriticPolicy.forward at 0x7fa2776a8790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa2776a8820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa2776a88b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa2776a8940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa2776a89d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa2776a8a60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa2776a8af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa27764cc40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1723712425794761677, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACBZE7/kqO0+mCBKPqFBXr6/AdG9QGi3PQAAAAAAAAAATbBRva7Rh7rqUEU2QuaBMSTjSjgzaWG1AACAPwAAgD/NJEY8SGOEuuZaaDlESIEx0W5fuxlfhbgAAIA/AACAP5pZKDwpoEC6kjXyOY9UqTX/9a+7FyEMuQAAgD8AAIA/ZltMvQjbJj++LDE9TZB7vncCRr36qEY8AAAAAAAAAAAAVZi8JAdxPA0+sj09vzS+Elt3PVNi07wAAAAAAAAAAIYeCT5xk1u79L+6ud+i6zYpd3m8LoffOAAAgD8AAIA/8z27PSkAaLo9O0K7ZvgRtuQynrp7cF86AACAPwAAgD8jGOc+a35gP1asKr3sQlG+yGspPhi0g70AAAAAAAAAAHrBdD7lcC4/pu4lvluefL7LOdY6Ym9OvQAAAAAAAAAAgHEzPeFairgKfp27+407Nue9P7uEK7G1AACAPwAAgD8AYBc6KZBEuv3GcLpasEU2lcwQOiLVhzkAAIA/AACAP0BL070Ujoi62DLBPISzCL2Lp7y7qEDvvQAAAAAAAIA/ANKPvR+dhLmooJ26BEO0OP7pLDkp+bE5AACAPwAAgD8AGO67j75Xuni+7brNudq1n6XjOgYyDDoAAIA/AACAP+YGC732xC+6S2NBOeaXjDMb+I272yVguAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGDtDfFaSs+MAWyUTegDjAF0lEdAkhroGlhw2nV9lChoBkdAZMMnFYMfBGgHTegDaAhHQJIb58eCCjF1fZQoaAZHQGfWPlMh5gRoB03oA2gIR0CSHTU+cH4XdX2UKGgGR0Bs9Appeu3daAdNxwJoCEdAkh2fegte2XV9lChoBkdAbPM9eyAxz2gHTQ8DaAhHQJIgFTUAks11fZQoaAZHQFzfZYxL0z1oB03oA2gIR0CSIoynUDuCdX2UKGgGR0BLXaa9bor4aAdNQwFoCEdAkipYB7u2JHV9lChoBkdAX8oofCAMD2gHTegDaAhHQJIrb4bjtHB1fZQoaAZHQE04ro4dZJVoB00oAWgIR0CSLrVn27FsdX2UKGgGR0BhO189fTkRaAdN6ANoCEdAkkbG8274BXV9lChoBkdAZfPIMBp5/2gHTegDaAhHQJJH52r4nF51fZQoaAZHQGWWjTa0x/NoB03oA2gIR0CSSXamoBJadX2UKGgGR0BFfj4xk/bCaAdNKQFoCEdAklEZCKJl8XV9lChoBkdAYft5FgDzRWgHTegDaAhHQJJTO4rjHXF1fZQoaAZHQDAlDa4+bExoB0v4aAhHQJJZQLQXyiF1fZQoaAZHQF+WE/jbSJFoB03oA2gIR0CSXfEIw/PgdX2UKGgGR0BjOfscABDHaAdN6ANoCEdAkmMQaR6ni3V9lChoBkdAYxZJZntfHGgHTegDaAhHQJJkLTz/ZNB1fZQoaAZHwDixb3XZoPFoB00tAWgIR0CSZQQ3xWkrdX2UKGgGR0BemoOlO45MaAdN6ANoCEdAkmhYEfT1CnV9lChoBkdAZBRajesPrmgHTegDaAhHQJJsq9Jz1bt1fZQoaAZHQFsvs90Rvm5oB03oA2gIR0CSbWAeJYT1dX2UKGgGR0BKRuPeYUnHaAdNBwFoCEdAkm26Np/PPnV9lChoBkdAXOBqtYB/7WgHTegDaAhHQJJuQfxMFll1fZQoaAZHQGOF3/giu+1oB03oA2gIR0CScDF4s3AEdX2UKGgGR0BkSCNMoMKDaAdN6ANoCEdAknJD0+TvA3V9lChoBkdAZhe65oXbd2gHTegDaAhHQJJ6GorFwUB1fZQoaAZHQDXSf8MuvlloB00rAWgIR0CSfXSsKb8WdX2UKGgGR0Bi9zEehf0FaAdN6ANoCEdAkn6g6+36RHV9lChoBkdAW+mEL6UJOWgHTegDaAhHQJKa6K4x1xN1fZQoaAZHQGN4X7k4m1JoB03oA2gIR0CSnI7yxzJZdX2UKGgGR0BiwIOavzOHaAdN6ANoCEdAkqR4Fiay8nV9lChoBkdAZRqkl/pdKWgHTegDaAhHQJKqDZbpu/F1fZQoaAZHQEXXpdrwe/5oB00OAWgIR0CSrkTibUgCdX2UKGgGR8BEExcE/0NCaAdNMQFoCEdAkq7W/8EV33V9lChoBkdAYFrnkkrwv2gHTegDaAhHQJK1C3x4IKN1fZQoaAZHQGZJj5CWu5loB03oA2gIR0CStmSbpeNUdX2UKGgGR0BgLRylvZRLaAdN6ANoCEdAkrd0ep4r0HV9lChoBkdAW0ghLXcxkGgHTegDaAhHQJK7kA4n4PB1fZQoaAZHQGL1ZmRNh3JoB03oA2gIR0CSwB8c+7lJdX2UKGgGR0BjJiK77Kq5aAdN6ANoCEdAksEfeLvTgHV9lChoBkdAXbowtapxWGgHTegDaAhHQJLBrONYKY11fZQoaAZHQFtf6g/TsppoB03oA2gIR0CSw9fNRm9QdX2UKGgGR0Bh3mx6fJ3gaAdN6ANoCEdAksXvOyE+PnV9lChoBkdAXWBBmf5DZ2gHTegDaAhHQJLOZCeEqUh1fZQoaAZHQGaMbQswtapoB03oA2gIR0CS0h0qH447dX2UKGgGR0BlOKwdKdxyaAdN6ANoCEdAktNFdcB2fXV9lChoBkfAQyEi6g/Ts2gHTTQBaAhHQJLTtlOGj9J1fZQoaAZHQFmMDQZ4wAVoB03oA2gIR0CS+nNz8xbjdX2UKGgGR0BgxeBas6q9aAdN6ANoCEdAkwCk8FINE3V9lChoBkdAY3vzltCRfWgHTegDaAhHQJMFRiCrcTJ1fZQoaAZHQGLbFFtsN2FoB03oA2gIR0CTBd8pCrtFdX2UKGgGR0Bmaq6reZXuaAdN6ANoCEdAkwrqzqrzXnV9lChoBkdAZCQjOcDr7mgHTegDaAhHQJML9D1Gsmx1fZQoaAZHQFfqqZtvXK9oB03oA2gIR0CTDLH446wMdX2UKGgGR0Bi91ijL0SRaAdN6ANoCEdAkw+60tyxRnV9lChoBkdAY2xtQbdadWgHTegDaAhHQJMTgi6g/Tt1fZQoaAZHQGAiH8baRIVoB03oA2gIR0CTFGgNwzcidX2UKGgGR0Be2SEQGwA3aAdN6ANoCEdAkxbhHoX9BXV9lChoBkdAW8uD+R5kb2gHTegDaAhHQJMY5Y2bXpZ1fZQoaAZHQEeK1BMSK3xoB00XAWgIR0CTHwYjSofkdX2UKGgGR0BlnPNA1NxmaAdN6ANoCEdAkyKVBMSK33V9lChoBkdAXV0yxiXpn2gHTegDaAhHQJMmrgCOmzl1fZQoaAZHQGCFx+rlvIhoB03oA2gIR0CTKA0kWykcdX2UKGgGR0BjayH0se4kaAdN6ANoCEdAkyhqVhTfi3V9lChoBkdAYuXuEVWS2mgHTegDaAhHQJNJRpJwsGx1fZQoaAZHQGNvOKGcnVpoB03oA2gIR0CTTpiNbTttdX2UKGgGR0Bj7TlLeyiVaAdN6ANoCEdAk1O/h60IC3V9lChoBkdAYJoEkB0ZFWgHTegDaAhHQJNUgUfxMFl1fZQoaAZHQGFTrtE5QxhoB03oA2gIR0CTWz2H+IdmdX2UKGgGR0Bk7LEvTPSlaAdN6ANoCEdAk1y+IdlunHV9lChoBkdAV05V0cOsk2gHTegDaAhHQJNdiHYYixF1fZQoaAZHQGX22A5Jbt9oB03oA2gIR0CTZSpWV/tqdX2UKGgGR0BmjmbAk9lmaAdN6ANoCEdAk2ZCjQAuI3V9lChoBkdAO8OFL39JjGgHTRUBaAhHQJNnDpIMBp51fZQoaAZHQGE712q1gIBoB03oA2gIR0CTaTW4Vh1DdX2UKGgGR0BYdAJkXk5qaAdN6ANoCEdAk2uZTMqz7nV9lChoBkdAY5FCOWBz3mgHTegDaAhHQJNxc0l7dBV1fZQoaAZHQFpJoBq9GqhoB03oA2gIR0CTdH4ZMtbtdX2UKGgGR0Bk4ZdKNAC5aAdN6ANoCEdAk3gINZvDQHV9lChoBkdAZG1thNM4+GgHTegDaAhHQJN5KG0u14R1fZQoaAZHQGV0FUQ04zdoB03oA2gIR0CTeZDtw71adX2UKGgGR0BMGdSl3yI6aAdNGgFoCEdAk3pOv+wTunV9lChoBkdAQLVyksSTQmgHTS8BaAhHQJOa4z3yqdZ1fZQoaAZHQGIz3Pqs2ehoB03oA2gIR0CTnVCK77KrdX2UKGgGR0BiZ5b+tKZlaAdN6ANoCEdAk6LKHXVbzXV9lChoBkdAXZZsYVIqb2gHTegDaAhHQJOnD2wmmch1fZQoaAZHQD3ltgrpaA5oB00MAWgIR0CTrDYWLxZudX2UKGgGR0Bh98RODaoNaAdN6ANoCEdAk60TkQwsXnV9lChoBkdAWrUEbHZK4GgHTegDaAhHQJOuK5Etuk11fZQoaAZHQGMNYnv2GqRoB03oA2gIR0CTrv668QI2dX2UKGgGR0BeH9vwVj7RaAdN6ANoCEdAk7aYWcjJMnV9lChoBkdAZNEMCLdepmgHTegDaAhHQJO3sVj7Q9l1fZQoaAZHQGCsW69TP0JoB03oA2gIR0CTuLGbCrLhdX2UKGgGR0BlSI8yN4qxaAdN6ANoCEdAk73pkf9xZXV9lChoBkdAYYb5B1LamGgHTegDaAhHQJPE6qlxffJ1fZQoaAZHQF5f3yqdYnxoB03oA2gIR0CTy1XMQmNSdX2UKGgGR0BhZDqD9OynaAdN6ANoCEdAk8x9rftQbnV9lChoBkdAY6fD0lJHy2gHTegDaAhHQJPM6z/p+tt1fZQoaAZHQGISj9XLeRBoB03oA2gIR0CTzcSk0rLAdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}