Model save
Browse files
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss:
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -65,43 +65,43 @@ The following hyperparameters were used during training:
|
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
-
| Training Loss | Epoch | Step
|
69 |
-
|
70 |
-
|
|
71 |
-
|
|
72 |
-
|
|
73 |
-
|
|
74 |
-
|
|
75 |
-
|
|
76 |
-
|
|
77 |
-
|
|
78 |
-
|
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
|
101 |
|
102 |
### Framework versions
|
103 |
|
104 |
-
- Transformers 4.
|
105 |
- Pytorch 2.0.1+cu117
|
106 |
-
- Datasets 2.14.
|
107 |
- Tokenizers 0.13.3
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.0
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 5.5031
|
36 |
+
- Accuracy: 0.0
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| No log | 1.0 | 1 | 0.6744 | 1.0 |
|
71 |
+
| No log | 2.0 | 2 | 0.7507 | 0.0 |
|
72 |
+
| No log | 3.0 | 3 | 0.9175 | 0.0 |
|
73 |
+
| No log | 4.0 | 4 | 1.1669 | 0.0 |
|
74 |
+
| No log | 5.0 | 5 | 1.4443 | 0.0 |
|
75 |
+
| No log | 6.0 | 6 | 1.7218 | 0.0 |
|
76 |
+
| No log | 7.0 | 7 | 2.0269 | 0.0 |
|
77 |
+
| No log | 8.0 | 8 | 2.3374 | 0.0 |
|
78 |
+
| No log | 9.0 | 9 | 2.6657 | 0.0 |
|
79 |
+
| 0.0781 | 10.0 | 10 | 2.9900 | 0.0 |
|
80 |
+
| 0.0781 | 11.0 | 11 | 3.2990 | 0.0 |
|
81 |
+
| 0.0781 | 12.0 | 12 | 3.5921 | 0.0 |
|
82 |
+
| 0.0781 | 13.0 | 13 | 3.8577 | 0.0 |
|
83 |
+
| 0.0781 | 14.0 | 14 | 4.1048 | 0.0 |
|
84 |
+
| 0.0781 | 15.0 | 15 | 4.3232 | 0.0 |
|
85 |
+
| 0.0781 | 16.0 | 16 | 4.5163 | 0.0 |
|
86 |
+
| 0.0781 | 17.0 | 17 | 4.6854 | 0.0 |
|
87 |
+
| 0.0781 | 18.0 | 18 | 4.8332 | 0.0 |
|
88 |
+
| 0.0781 | 19.0 | 19 | 4.9602 | 0.0 |
|
89 |
+
| 0.0003 | 20.0 | 20 | 5.0735 | 0.0 |
|
90 |
+
| 0.0003 | 21.0 | 21 | 5.1691 | 0.0 |
|
91 |
+
| 0.0003 | 22.0 | 22 | 5.2486 | 0.0 |
|
92 |
+
| 0.0003 | 23.0 | 23 | 5.3151 | 0.0 |
|
93 |
+
| 0.0003 | 24.0 | 24 | 5.3696 | 0.0 |
|
94 |
+
| 0.0003 | 25.0 | 25 | 5.4131 | 0.0 |
|
95 |
+
| 0.0003 | 26.0 | 26 | 5.4466 | 0.0 |
|
96 |
+
| 0.0003 | 27.0 | 27 | 5.4711 | 0.0 |
|
97 |
+
| 0.0003 | 28.0 | 28 | 5.4879 | 0.0 |
|
98 |
+
| 0.0003 | 29.0 | 29 | 5.4983 | 0.0 |
|
99 |
+
| 0.0 | 30.0 | 30 | 5.5031 | 0.0 |
|
100 |
|
101 |
|
102 |
### Framework versions
|
103 |
|
104 |
+
- Transformers 4.33.3
|
105 |
- Pytorch 2.0.1+cu117
|
106 |
+
- Datasets 2.14.5
|
107 |
- Tokenizers 0.13.3
|