File size: 7,822 Bytes
5843771
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
---
base_model: BAAI/bge-large-en-v1.5
datasets:
- nazhan/qa-lookup-dataset-iter-1
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Get me the first names of employees working in the 'Legal' department.
- text: Provide the value of the export tariff paid on shipments to 'Country Z' in
    2024.
- text: Show me the value of the freight charges for the shipment made on October
    10, 2023.
- text: Show me the value of the refund issued to 'Customer K' for a defective product.
- text: Provide the value of the environmental compliance cost for 2023.
inference: true
model-index:
- name: SetFit with BAAI/bge-large-en-v1.5
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: nazhan/qa-lookup-dataset-iter-1
      type: nazhan/qa-lookup-dataset-iter-1
      split: test
    metrics:
    - type: accuracy
      value: 1.0
      name: Accuracy
---

# SetFit with BAAI/bge-large-en-v1.5

This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [nazhan/qa-lookup-dataset-iter-1](https://huggingface.co/datasets/nazhan/qa-lookup-dataset-iter-1) dataset that can be used for Text Classification. This SetFit model uses [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
- **Training Dataset:** [nazhan/qa-lookup-dataset-iter-1](https://huggingface.co/datasets/nazhan/qa-lookup-dataset-iter-1)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label  | Examples                                                                                                                                                                                                                                                         |
|:-------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lookup | <ul><li>'Get me the list of customers who placed their first order in 2024.'</li><li>"Filter by products in the 'Gadgets' category and show me their prices."</li><li>'Get me the email addresses of customers who have made a purchase.'</li></ul>              |
| qa     | <ul><li>'Provide the value of the accrued vacation liability as of June 2023.'</li><li>'Show me the value of the courier service charges for November 2023.'</li><li>"Provide the value of the consulting contract with 'Client N' finalized in 2023."</li></ul> |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 1.0      |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("nazhan/bge-large-en-v1.5-brahmaputra-qa-lookup-iter-1-2-epoch")
# Run inference
preds = model("Provide the value of the environmental compliance cost for 2023.")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 8   | 12.8309 | 19  |

| Label  | Training Sample Count |
|:-------|:----------------------|
| Lookup | 65                    |
| qa     | 71                    |

### Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True

### Training Results
| Epoch   | Step    | Training Loss | Validation Loss |
|:-------:|:-------:|:-------------:|:---------------:|
| 0.0034  | 1       | 0.1823        | -               |
| 0.1701  | 50      | 0.0031        | -               |
| 0.3401  | 100     | 0.0012        | -               |
| 0.5102  | 150     | 0.0011        | -               |
| 0.6803  | 200     | 0.0009        | -               |
| 0.8503  | 250     | 0.0008        | -               |
| 1.0     | 294     | -             | 0.0004          |
| 1.0204  | 300     | 0.0008        | -               |
| 1.1905  | 350     | 0.0008        | -               |
| 1.3605  | 400     | 0.0007        | -               |
| 1.5306  | 450     | 0.0006        | -               |
| 1.7007  | 500     | 0.0006        | -               |
| 1.8707  | 550     | 0.0006        | -               |
| **2.0** | **588** | **-**         | **0.0003**      |

* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.11.9
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.0.1
- Transformers: 4.44.2
- PyTorch: 2.4.0+cu121
- Datasets: 2.21.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->