--- license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - generated_from_trainer datasets: - common_voice_6_1 metrics: - wer model-index: - name: wav2vec2-large-mms-1b-turkish-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_6_1 type: common_voice_6_1 config: sah split: test args: sah metrics: - name: Wer type: wer value: 0.25161387179102235 --- # wav2vec2-large-mms-1b-turkish-colab This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the common_voice_6_1 dataset. It achieves the following results on the evaluation set: - Loss: 0.1919 - Wer: 0.2516 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 14 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.8237 | 0.76 | 100 | 0.2160 | 0.2746 | | 0.2621 | 1.52 | 200 | 0.2046 | 0.2647 | | 0.2287 | 2.27 | 300 | 0.1980 | 0.2560 | | 0.2263 | 3.03 | 400 | 0.1937 | 0.2530 | | 0.2171 | 3.79 | 500 | 0.1919 | 0.2516 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0