--- library_name: transformers license: llama3.1 datasets: - jondurbin/gutenberg-dpo-v0.1 - nbeerbower/gutenberg2-dpo - jondurbin/truthy-dpo-v0.1 - kyujinpy/orca_math_dpo - antiven0m/physical-reasoning-dpo base_model: - mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated --- ![image/png](https://huggingface.co/nbeerbower/Llama3.1-Allades-8B/resolve/main/allades.png?download=true) # Llama3.1-Allades-8B Allades finetunes abliterated Llama 3.1 with 5 datasets to improve creative writing, reasoning, and roleplay. ## Datasets - [jondurbin/gutenberg-dpo-v0.1](https://huggingface.co/datasets/jondurbin/gutenberg-dpo-v0.1) - [nbeerbower/gutenberg2-dpo](https://huggingface.co/datasets/nbeerbower/gutenberg2-dpo) - [jondurbin/truthy-dpo-v0.1](https://huggingface.co/datasets/jondurbin/truthy-dpo-v0.1) - [kyujinpy/orca_math_dpo](https://huggingface.co/datasets/kyujinpy/orca_math_dpo) - [antiven0m/physical-reasoning-dpo](https://huggingface.co/datasets/antiven0m/physical-reasoning-dpo) ## Training [ORPO tuned](https://mlabonne.github.io/blog/posts/2024-04-19_Fine_tune_Llama_3_with_ORPO.html) for 1 epoch with 2x RTX 3090 (sponsored by [Schneewolf Labs](https://schneewolflabs.com)). Data was prepared with [Llama 3.1 Instruct](https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_1/).