--- license: apache-2.0 --- # Positive Transfer Of The Whisper Speech Transformer To Human And Animal Voice Activity Detection We proposed **WhisperSeg**, utilizing the Whisper Transformer pre-trained for Automatic Speech Recognition (ASR) for both human and animal Voice Activity Detection (VAD). For more details, please refer to our paper: > [**Positive Transfer of the Whisper Speech Transformer to Human and Animal Voice Activity Detection**](https://doi.org/10.1101/2023.09.30.560270) > > Nianlong Gu, Kanghwi Lee, Maris Basha, Sumit Kumar Ram, Guanghao You, Richard H. R. Hahnloser
> University of Zurich and ETH Zurich *Accepted to the 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2024)* The model "nccratliri/whisperseg-base-animal-vad" is the checkpoint of the multi-species WhisperSeg-base that was finetuned on the vocal segmentation datasets of five species. ## Usage ### Clone the GitHub repo and install dependencies ```bash git clone https://github.com/nianlonggu/WhisperSeg.git cd WhisperSeg; pip install -r requirements.txt ``` Then in the folder "WhisperSeg", run the following python script: ```python from model import WhisperSegmenter import librosa import json segmenter = WhisperSegmenter( "nccratliri/whisperseg-base-animal-vad", device="cuda" ) sr = 32000 spec_time_step = 0.0025 audio, _ = librosa.load( "data/example_subset/Zebra_finch/test_adults/zebra_finch_g17y2U-f00007.wav", sr = sr ) ## Note if spec_time_step is not provided, a default value will be used by the model. prediction = segmenter.segment( audio, sr = sr, spec_time_step = spec_time_step ) print(prediction) ``` {'onset': [0.01, 0.38, 0.603, 0.758, 0.912, 1.813, 1.967, 2.073, 2.838, 2.982, 3.112, 3.668, 3.828, 3.953, 5.158, 5.323, 5.467], 'offset': [0.073, 0.447, 0.673, 0.83, 1.483, 1.882, 2.037, 2.643, 2.893, 3.063, 3.283, 3.742, 3.898, 4.523, 5.223, 5.393, 6.043], 'cluster': ['zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0', 'zebra_finch_0']} Visualize the results of WhisperSeg: ```python from audio_utils import SpecViewer spec_viewer = SpecViewer() spec_viewer.visualize( audio = audio, sr = sr, min_frequency= min_frequency, prediction = prediction, window_size=8, precision_bits=1 ) ``` ![vis](https://github.com/nianlonggu/WhisperSeg/blob/master/assets/res_zebra_finch_adults_prediction_only.png?raw=true) Run it in Google Colab: Open In Colab For more details, please refer to the GitHub repository: https://github.com/nianlonggu/WhisperSeg ## Citation When using our code or models for your work, please cite the following paper: ``` @INPROCEEDINGS{10447620, author={Gu, Nianlong and Lee, Kanghwi and Basha, Maris and Kumar Ram, Sumit and You, Guanghao and Hahnloser, Richard H. R.}, booktitle={ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, title={Positive Transfer of the Whisper Speech Transformer to Human and Animal Voice Activity Detection}, year={2024}, volume={}, number={}, pages={7505-7509}, keywords={Voice activity detection;Adaptation models;Animals;Transformers;Acoustics;Human voice;Spectrogram;Voice activity detection;audio segmentation;Transformer;Whisper}, doi={10.1109/ICASSP48485.2024.10447620}} ``` ## Contact nianlong.gu@uzh.ch