ncduy commited on
Commit
36f76a0
1 Parent(s): f82cc9d

1st commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,9 +1,24 @@
1
  #@title
2
  ---
 
3
  tags:
 
4
  - deep-reinforcement-learning
5
  - reinforcement-learning
6
  - stable-baselines3
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  ---
8
  # {name_of_your_repo}
9
 
 
1
  #@title
2
  ---
3
+ library_name: stable-baselines3
4
  tags:
5
+ - LunarLander-v2
6
  - deep-reinforcement-learning
7
  - reinforcement-learning
8
  - stable-baselines3
9
+ model-index:
10
+ - name: PPO
11
+ results:
12
+ - metrics:
13
+ - type: mean_reward
14
+ value: 290.76 +/- 18.71
15
+ name: mean_reward
16
+ task:
17
+ type: reinforcement-learning
18
+ name: reinforcement-learning
19
+ dataset:
20
+ name: LunarLander-v2
21
+ type: LunarLander-v2
22
  ---
23
  # {name_of_your_repo}
24
 
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbb57248170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbb57248200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbb57248290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbb57248320>", "_build": "<function ActorCriticPolicy._build at 0x7fbb572483b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fbb57248440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbb572484d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbb57248560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbb572485f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbb57248680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbb57248710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fbb57285e10>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgOqusbU2gilyR2usHxsB8ODwPlP8DnQHtT5Lp5As1Zo0A1d/IgByrGX5WPj+YHrHyLKyh4hXKDJFaQJujZPi4V1aUdvCKfatLNSuXOV/F8XFh/kTtsj/3EHNsPBOQcI9QXOQpibpaN5MrFzzNwuAWH43gGue8qtB4aGC9iN4ahyyQQUeWMFtl6vec/liW0xCoIVjn6KHFx0f4OBQ7AcYCiU628XoVzbf25OyQPkbQCpBfiqhDmP+VlQh22vcwuHLFfllSme2qXBsJeJYMMauSbYWKof1l2Usp6ASxQZkN6RFIgijHmcXwHGmEBkvHk8HOY1QgDnxB32GtsoO4eRw5SQQYbR68BHIaa1LDLuxMY5zgvPRgLbkfwTmoKI/pZDuck50KCuILgWbgA06hUYxdtHRsNHZNZVGA2R+YrVLK+ByOdUglJQ4/cEfKUsLtndII0Tl8d3Tvciv0mpMF7PRGJbQRHyyoFX8oRxsHZoVjnaXMX2eXrH2VMtjRxy0Q6eO6ZUlWenmBBSnhwpGK7GjiZnVkWMKP4EJFBZ8nacUsPMRfaCdp2pAmlmH64yOD7GZftGJmj767SlBz+Ae5C7gtmaSg/YwlQCIHnVUdyfR1c8CsD+/Tv38cdmqv/Z4+lkqrEJGLfbuXJxjRw6BYJqvgOGZ2hf0COPWGlIdtIQtkqi0/txxQnWzgyKVi0VgqoyeboxUHbWAdRBvI9c89H7f+kHrYfKxvYqExYfk8Y4N1ywZPhM2ZOJJeXkrwlaWw349fAP1Luf1kWw5rx9GCTI45yrJP5uFcFLQRGW+lCEG1kKpD40f1EFpiufRTGimBNmfQpLx3XT65nTt4BvoFrhEx5rIpx4H8fpM4EBC4EC+NOLVG3VrZpOAYgmJwl8NIe/KqMwSwVwz1AkLOuHzF14axQBR2fIU1fp3bm2rO2LWTto2BHJfZk7rOIAS1k7i1UBTlA8pUuyRDZXgyXJNF87yTyNTe4e40XFevcT9SW+9xYDgITfkIo78wBu77/dbMKG5NZgCkGEBqCtGnTuBd1raREpsOrjuRA1AazdD7EnK3LVJ3Rc7AL2pHOAeYuFs5EXFSP89xCrEXWdvYox0oF+CPmSY3cHY8kCp+CYXeIX5bAgdiU+fY/SjIm0OwBO/ga5N3FQ6an3PMzrbpk/88mLs7YtO+ySlmkawbJ+TjU2TpTLQHSDJdZRp29BtO3PQaj7eStmKghNZQb9rGFmuLO5JE+DQm5X+NjoB6oD5ngyvsYi4VR0dl7J0Q9uXbVT7K6QM69DvzDYxxH+9s+RRNwU5Bs5BY6zPla0/P9i0n5Eb35P9lalkm0HELa6gWGe+A3TVLC3MV2D39M7WYkSpIxMbzSbit57Wv7f9VoiqTu+XPVyhm0gFAOqQDis8uur6xhKWtQqa9zVAG3IOZw+QYLXb2yUZc2IbIDwurmrU+UBD3hGQBPhE12oHMObpOEln3j556SB9iHWY5SeeedU5MglUIRYs38n8QgjgU0ejBqDgBy9tyd3SNUwXmJo5YQgUnKFSyr+46WIbfVfp+A2psurAUPiT8EXaEVRiZxLhECNM1UmXaUQNjLnc6lGFCvRHCPNvyr5QZlr/j6PfW7GB2tiJ89lg0tAnnWTdXEbQM8lk9rnVHVLCzhNXCPKuJuUVR2PLOQ2G25KqYZMwRCpVcYxP89zxIjLr4sr9wCkILkbinOrrXhGwWir6/i+ZHdHQAsvQxyaSCsS9zLXPoQn0hr0As0TPEFQUCB120czCrbJ4iF9Y+ZGbF3yLblIMl7/n+VE5h2AzVX9Lg4zsK3w1P9jssDDfZawEPEf2TcW/RA6PvQXs8YzGNcE4QXrpZASnDEgnUf8Kfr+e+8ruMmmn7BCZJTOAJ2ODDu6HP3LzAcFlqEOyKCfAJ47wXKTKRWceBB8fhfonSDYRjC9h5pRFCToEgGntnOyfmLVVv3FsLF9eMMbldFQZdUOzWpKrM7ICGhy5r1284pQpKKdNLQ7jWEr7oheDje9FM5syinmuAHJFsfSMX4HDQnx5p74HCJaVBHyG8Ov/0nUan/k9ZeuEY0yAi4XyMyAM7JJ69ALBiJSxm6ln4EptHCwzfrtHkONNFCpBu8Cp0GUiF5YwjJZVIApDX+Z7VJFEdJQz2rO6014hoNVxl/pPnUVFZ7otOw8zt2r6PyNe0S1cqt8eqgAZYUC4RUgZPGLzvC1LnNHydC4rdYWq1tsuM+RbdyT9BOQOQ4UrEh4Je3tIQDaneX8AqI61BahgYOlcqTUmfyvDF31FhcbXWwpt/KdaeXypun8PwuFLMpi3lWQtyrhaHYfN2vF5htIX3v/CG4Gmm9nlGjfFYFxGLJKuDAJyMTMjZSTi4aMfVM7NIBTD3/1Lad20Qo0aAMXl/NOvs+UPT7C53v+EGICa+npcfDOtLLWmyuALM/vg5oe2fozqInBVn76uHy5WRS7ITM6ZJs9NlMeUf2MpCjBvFsl6MAOj6u/95bA83hFyDfIUscOOKNZrloDmZ1dgwWoZhiKZfEDNE6Y4qO+x8EmdTK69npIc7adP/MuVNQJys0/9OXn4XCcjymNbHlwEaUHhMi6jfmdawhec1M5HIYv5MK2mydefzC2HdlpNn0wxT9V+o1LdhBrB+SlF086FRPaWE5CHhJZ13Bu2qHW0KNEuqGxhjoAMb+PUNtIgzKHrw7bDFgOC+fGLILSd/taVljB99y8rIHQQZznD/xyFCKiqpuJYp5zrSRwh/qAyECeN0H83388G0xaxOEet7J9bkS2EOw3aEcY0QTqEDwDLCXMrpGbsoP8G7hPPcmJ7q9D5RnZQjpt6nJICeupoUb53enc7NeylaRFNT1WlW8zpmPhIp//fWw8eshNYvL0uM/vye+ahBvvMxCAdOjrtWb0b+h+3zMUTuUJV9sC0zkclZHeJX29ZWocGCL15R1pyI9CGuFAZyOwFI5E73zkb5uzBO1V9qWjADmvi+chsq8eaE6MFo/5YF952L1VX/ZyStm58RbIqmjBZzCM+csO6iNPyeva4YtMtpCUZN3X322dxFd/XJ6pipFv/67fs7eOnf81obOIiR0s/bYpxnZlRqttk57eZvyL7qv3Ho9n/qWjEEqTscnqA0jBBnT4plChVvdy+XleD8Ccft7igOEFWW9zjyX+Es6RL2bQo4/dIBIDSCrFW28YwbanyT7fcugE4r7HV/sHgdf5J5KUs1SQHeXJg/lGMo6AfJTEK0jHfPDgJ/OyQjS3Z+rICcLcRvbLWjA7iezDKh79W7JGBGK8MgwiCeE2nPCzpXTFmiEbpCmqXTZmBfafnTGd3BgeGA0FYlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": 42, "action_noise": null, "start_time": 1652154527.949909, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAC3YBj6cFvo+3itRvkUAQ79KJQA+lkRSvgAAAAAAAAAA5h0mvcdvST9Yh5W9RKmHv8lZ87yhlTq8AAAAAAAAAADG2hS+wcCsPupxBD6T7B6/aR4vvhq9Sj4AAAAAAAAAAIvdir41+00/evOovkcHJr9W4Be/KIBrvQAAAAAAAAAA28OUvuRwOT/TSiE+IOUYv4NSBL9eL2A+AAAAAAAAAADaEuG9OnR6PsKmZj1nRg+/2Xcfvp40BT4AAAAAAAAAAICbY70sgJo8cqymPd6aVr61dRK8H5+RPQAAAAAAAAAAgGFHvre1rT6K6aA+mTY1vyS7oL0S0Qk+AAAAAAAAAABmCHm9w3F4uoJnBDxEA5I5ipHCuo+QJToAAIA/AACAP+2LZz5RBlc/xewjPkvG675VGg0//KTFPQAAAAAAAAAAcwNOvsi0dD/8k8a+Kyk0v0nD975eYk6+AAAAAAAAAAAz8qE8ChdOueJq6DpakiY1elsGO0b2B7oAAIA/AACAP3MqDj7A8As/dilwvv1vUr/wKQc+6ghivgAAAAAAAAAAoGU3PnYwJT8eJom9BFVCvx8t4T4PlYe+AAAAAAAAAADN2Gm99tQluvRqJzmT3Hg0VmTIOwpQRrgAAIA/AACAP9PaED7Zweo+mEcdvkPNO7/WMH4+9mmIvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI81meBzdScUCUhpRSlIwBbJRLqIwBdJRHQLnTceeWfK91fZQoaAZoCWgPQwhg5GVN7MlxQJSGlFKUaBVLn2gWR0C503Kl+EytdX2UKGgGaAloD0MIzVzg8pjTcUCUhpRSlGgVS55oFkdAudN7E87p3XV9lChoBmgJaA9DCFkzMsjdqnFAlIaUUpRoFUugaBZHQLnTgA+Y+jd1fZQoaAZoCWgPQwjmzkwwHE5zQJSGlFKUaBVLkmgWR0C504n+l0o0dX2UKGgGaAloD0MIVOBkGzhbc0CUhpRSlGgVS6xoFkdAudOKECeVcHV9lChoBmgJaA9DCHXJOEYyoHBAlIaUUpRoFUukaBZHQLnTkLUCq6x1fZQoaAZoCWgPQwjPvvIgPVVzQJSGlFKUaBVLkmgWR0C505v8Q7LddX2UKGgGaAloD0MI9UvEW6dPcUCUhpRSlGgVS6toFkdAudPE4o7V8XV9lChoBmgJaA9DCEJg5dBiYnNAlIaUUpRoFUu9aBZHQLnT0+7lJYl1fZQoaAZoCWgPQwiEKcql8UhzQJSGlFKUaBVLp2gWR0C509cp5NXYdX2UKGgGaAloD0MIDi4dcx60cECUhpRSlGgVS6NoFkdAudPatq59VnV9lChoBmgJaA9DCB11dFyNcnNAlIaUUpRoFUubaBZHQLnT3QGwA2h1fZQoaAZoCWgPQwgxXB0A8fVwQJSGlFKUaBVLomgWR0C50+dd7fHhdX2UKGgGaAloD0MIHRzsTczec0CUhpRSlGgVS6JoFkdAudQCeCkGinV9lChoBmgJaA9DCIguqG+Z1XFAlIaUUpRoFUuQaBZHQLnUAsCDEm91fZQoaAZoCWgPQwgD6s2oORJyQJSGlFKUaBVLfWgWR0C51AHD3ueCdX2UKGgGaAloD0MIsd6oFaZicUCUhpRSlGgVS4poFkdAudQgnrpqynV9lChoBmgJaA9DCPYM4ZhlJnJAlIaUUpRoFUuQaBZHQLnUL3Jgb6x1fZQoaAZoCWgPQwg+WTFc3cdyQJSGlFKUaBVLtWgWR0C51DmluWKNdX2UKGgGaAloD0MIC2MLQQ6lckCUhpRSlGgVS7RoFkdAudQ466reZXV9lChoBmgJaA9DCHY3T3XIeHBAlIaUUpRoFUuaaBZHQLnUR3wCr951fZQoaAZoCWgPQwgrptJP+PJxQJSGlFKUaBVLsGgWR0C51EwvDgqFdX2UKGgGaAloD0MIVwkWh/NbdECUhpRSlGgVS8BoFkdAudRUA80UGnV9lChoBmgJaA9DCHdpw2Fp429AlIaUUpRoFUuTaBZHQLnUZ+DvmYB1fZQoaAZoCWgPQwhjCACOvdZyQJSGlFKUaBVLkmgWR0C51HUo0ALidX2UKGgGaAloD0MISrIOR1fzcUCUhpRSlGgVS5poFkdAudSBPAO8TXV9lChoBmgJaA9DCGa/7nTnuXFAlIaUUpRoFUuUaBZHQLnUgKIi1Rd1fZQoaAZoCWgPQwh00CUcuqFyQJSGlFKUaBVLmGgWR0C51JA2Q4jsdX2UKGgGaAloD0MIm1lLAeljc0CUhpRSlGgVS7ZoFkdAudSlZZB9kXV9lChoBmgJaA9DCBVSflJtdHNAlIaUUpRoFUugaBZHQLnUtul41P51fZQoaAZoCWgPQwj/lZUmZf1yQJSGlFKUaBVLoGgWR0C51LXvYvnKdX2UKGgGaAloD0MIvi8uVWnZckCUhpRSlGgVS7FoFkdAudTLAeq7y3V9lChoBmgJaA9DCLDo1mu6yXBAlIaUUpRoFUuaaBZHQLnUzpiqhlF1fZQoaAZoCWgPQwg0gSIW8dFxQJSGlFKUaBVLh2gWR0C51NGkWRA9dX2UKGgGaAloD0MInKIjufxYckCUhpRSlGgVS6RoFkdAudTnsjVx0nV9lChoBmgJaA9DCPSkTGooQ3NAlIaUUpRoFUuVaBZHQLnU8y6tknV1fZQoaAZoCWgPQwh6q65DdRZxQJSGlFKUaBVLm2gWR0C51PVZHNHIdX2UKGgGaAloD0MI+igjLsAKdECUhpRSlGgVS7NoFkdAudUCH58BuHV9lChoBmgJaA9DCO4ljdG6NHNAlIaUUpRoFUu0aBZHQLnVILThHb11fZQoaAZoCWgPQwi1bK0vkixwQJSGlFKUaBVLgmgWR0C51SenuRcNdX2UKGgGaAloD0MI86ykFZ/Mc0CUhpRSlGgVS6poFkdAudUs2VE/jnV9lChoBmgJaA9DCCTTodPznXFAlIaUUpRoFUuoaBZHQLnVODOTq0N1fZQoaAZoCWgPQwj4Nv3ZD1JyQJSGlFKUaBVLoWgWR0C51Tzqnm7rdX2UKGgGaAloD0MIFk890iAwc0CUhpRSlGgVS6hoFkdAudVEbGWD6HV9lChoBmgJaA9DCJzgm6YPvnJAlIaUUpRoFUulaBZHQLnVeXv6TGJ1fZQoaAZoCWgPQwiu1/SgYA1xQJSGlFKUaBVLumgWR0C51YENOM2ndX2UKGgGaAloD0MI7Q+U23alc0CUhpRSlGgVS5toFkdAudWLHIZIhHV9lChoBmgJaA9DCNldoKSAJHJAlIaUUpRoFUuNaBZHQLnVkqZML4N1fZQoaAZoCWgPQwiAtWrXhL5yQJSGlFKUaBVLqGgWR0C51ZQxi5NHdX2UKGgGaAloD0MI04cuqC94c0CUhpRSlGgVS75oFkdAudWZvP1L8XV9lChoBmgJaA9DCIoAp3exAnNAlIaUUpRoFUuMaBZHQLnVqyN4qw11fZQoaAZoCWgPQwjwFkhQ/ONyQJSGlFKUaBVLpGgWR0C51bofjjrBdX2UKGgGaAloD0MIcoqO5DIMdECUhpRSlGgVS61oFkdAudXCgElme3V9lChoBmgJaA9DCD//PXhtcHRAlIaUUpRoFUvVaBZHQLnVy2jfvWp1fZQoaAZoCWgPQwj21Oqr64pzQJSGlFKUaBVLoGgWR0C51d7KzRhMdX2UKGgGaAloD0MIE/OspJWocECUhpRSlGgVS51oFkdAudXmC2+fy3V9lChoBmgJaA9DCMb83NCUXnNAlIaUUpRoFUulaBZHQLnV6qlxffJ1fZQoaAZoCWgPQwiS6GUUi89yQJSGlFKUaBVLrWgWR0C51gYcm0E6dX2UKGgGaAloD0MI9n6jHbd4cECUhpRSlGgVS6doFkdAudYGg7HQyHV9lChoBmgJaA9DCIv9ZfekgXJAlIaUUpRoFUu0aBZHQLnWCe05U991fZQoaAZoCWgPQwgXEjC6/EtwQJSGlFKUaBVLhWgWR0C51hNU4rBkdX2UKGgGaAloD0MITGw+rs0ZckCUhpRSlGgVS4NoFkdAudYf5Lytm3V9lChoBmgJaA9DCL4yb9X1EnJAlIaUUpRoFUuTaBZHQLnWKJ5E+gV1fZQoaAZoCWgPQwhORwA3i3lNQJSGlFKUaBVLZmgWR0C51jS1JDmbdX2UKGgGaAloD0MI6lkQyvsob0CUhpRSlGgVS41oFkdAudY3tb9qDnV9lChoBmgJaA9DCEUvo1guH3FAlIaUUpRoFUueaBZHQLnWQzwMH8l1fZQoaAZoCWgPQwjHL7ySJFJyQJSGlFKUaBVLi2gWR0C51kZOi35OdX2UKGgGaAloD0MIrptSXqu9ckCUhpRSlGgVS6doFkdAudZ1DKHO8nV9lChoBmgJaA9DCCtoWmLlP3JAlIaUUpRoFUvPaBZHQLnWfMibDuV1fZQoaAZoCWgPQwjq6Lga2TlzQJSGlFKUaBVLqGgWR0C51odzCDVZdX2UKGgGaAloD0MInkXvVEDrc0CUhpRSlGgVS5poFkdAudaT9ycTanV9lChoBmgJaA9DCFSOyeK+4HNAlIaUUpRoFUu1aBZHQLnWqw5vLox1fZQoaAZoCWgPQwh/SwD+qbJxQJSGlFKUaBVLsGgWR0C51rFtO2y+dX2UKGgGaAloD0MIW+m12Vjfb0CUhpRSlGgVS5VoFkdAudaze54GEHV9lChoBmgJaA9DCOWZl8Ou53BAlIaUUpRoFUuYaBZHQLnWvqN6w+t1fZQoaAZoCWgPQwgUXKyowcZxQJSGlFKUaBVLfGgWR0C51sIxQBPsdX2UKGgGaAloD0MIuwuUFNhoc0CUhpRSlGgVS6doFkdAudbEClrM1XV9lChoBmgJaA9DCP6eWKcKFXFAlIaUUpRoFUueaBZHQLnW0X/YJ3R1fZQoaAZoCWgPQwidZKvLqRl0QJSGlFKUaBVLumgWR0C51td3np0PdX2UKGgGaAloD0MI2A+xwQI4ckCUhpRSlGgVS39oFkdAudbWWC2+f3V9lChoBmgJaA9DCBe6EoFqdnFAlIaUUpRoFUuoaBZHQLnW4v4ubqh1fZQoaAZoCWgPQwjdQlciUHpwQJSGlFKUaBVLnWgWR0C51vCS/0uldX2UKGgGaAloD0MIuYlamlvhckCUhpRSlGgVS6xoFkdAudb03irDInV9lChoBmgJaA9DCLLV5ZQAoXJAlIaUUpRoFUuSaBZHQLnXFAPNFBp1fZQoaAZoCWgPQwhpyHiUCnlyQJSGlFKUaBVLpWgWR0C51zI4MnZ1dX2UKGgGaAloD0MItaM4R92acUCUhpRSlGgVS59oFkdAuddB86V+qnV9lChoBmgJaA9DCAfQ7/t3bnNAlIaUUpRoFUu/aBZHQLnXXTc6/7B1fZQoaAZoCWgPQwioxks3icRuQJSGlFKUaBVLkGgWR0C512HrUsnRdX2UKGgGaAloD0MIbXAi+nWYcUCUhpRSlGgVS59oFkdAuddiNxVAA3V9lChoBmgJaA9DCOQuwhTlhHBAlIaUUpRoFUuZaBZHQLnXaLV4HHF1fZQoaAZoCWgPQwgcQwBw7PRyQJSGlFKUaBVLrGgWR0C513J3C9AYdX2UKGgGaAloD0MIObcJ9wpIc0CUhpRSlGgVS7toFkdAudd67Ciyp3V9lChoBmgJaA9DCFfRH5q5cnFAlIaUUpRoFUupaBZHQLnXfwkPczt1fZQoaAZoCWgPQwjJrN7htuVzQJSGlFKUaBVLmWgWR0C514D2OAAidX2UKGgGaAloD0MIBB4YQPgHc0CUhpRSlGgVS49oFkdAudeD974SH3V9lChoBmgJaA9DCCxF8pVA7XFAlIaUUpRoFUuEaBZHQLnXiv5xiod1fZQoaAZoCWgPQwiQ2y+frEdyQJSGlFKUaBVLr2gWR0C515FlwtJ4dX2UKGgGaAloD0MIRSqMLYRKcUCUhpRSlGgVS6hoFkdAudeQngHeJ3V9lChoBmgJaA9DCC2VtyOcXnNAlIaUUpRoFUuXaBZHQLnXmM9KVY91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1530, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
output.mp4 CHANGED
Binary files a/output.mp4 and b/output.mp4 differ
 
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb9b735b894dc536c525d50e8e01e199fd16bc5c2696f02d4333aca2aa499198
3
+ size 200600
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 290.75949622891665, "std_reward": 18.707939135220474, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-10T05:22:02.735316"}
trial-1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a89402e878026153c55de340db777cbffd1a068a95da26c75f7cc17b4359c68e
3
+ size 147642
trial-1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
trial-1/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbb57248170>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbb57248200>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbb57248290>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbb57248320>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fbb572483b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fbb57248440>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbb572484d0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fbb57248560>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbb572485f0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbb57248680>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbb57248710>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fbb57285e10>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgOqusbU2gilyR2usHxsB8ODwPlP8DnQHtT5Lp5As1Zo0A1d/IgByrGX5WPj+YHrHyLKyh4hXKDJFaQJujZPi4V1aUdvCKfatLNSuXOV/F8XFh/kTtsj/3EHNsPBOQcI9QXOQpibpaN5MrFzzNwuAWH43gGue8qtB4aGC9iN4ahyyQQUeWMFtl6vec/liW0xCoIVjn6KHFx0f4OBQ7AcYCiU628XoVzbf25OyQPkbQCpBfiqhDmP+VlQh22vcwuHLFfllSme2qXBsJeJYMMauSbYWKof1l2Usp6ASxQZkN6RFIgijHmcXwHGmEBkvHk8HOY1QgDnxB32GtsoO4eRw5SQQYbR68BHIaa1LDLuxMY5zgvPRgLbkfwTmoKI/pZDuck50KCuILgWbgA06hUYxdtHRsNHZNZVGA2R+YrVLK+ByOdUglJQ4/cEfKUsLtndII0Tl8d3Tvciv0mpMF7PRGJbQRHyyoFX8oRxsHZoVjnaXMX2eXrH2VMtjRxy0Q6eO6ZUlWenmBBSnhwpGK7GjiZnVkWMKP4EJFBZ8nacUsPMRfaCdp2pAmlmH64yOD7GZftGJmj767SlBz+Ae5C7gtmaSg/YwlQCIHnVUdyfR1c8CsD+/Tv38cdmqv/Z4+lkqrEJGLfbuXJxjRw6BYJqvgOGZ2hf0COPWGlIdtIQtkqi0/txxQnWzgyKVi0VgqoyeboxUHbWAdRBvI9c89H7f+kHrYfKxvYqExYfk8Y4N1ywZPhM2ZOJJeXkrwlaWw349fAP1Luf1kWw5rx9GCTI45yrJP5uFcFLQRGW+lCEG1kKpD40f1EFpiufRTGimBNmfQpLx3XT65nTt4BvoFrhEx5rIpx4H8fpM4EBC4EC+NOLVG3VrZpOAYgmJwl8NIe/KqMwSwVwz1AkLOuHzF14axQBR2fIU1fp3bm2rO2LWTto2BHJfZk7rOIAS1k7i1UBTlA8pUuyRDZXgyXJNF87yTyNTe4e40XFevcT9SW+9xYDgITfkIo78wBu77/dbMKG5NZgCkGEBqCtGnTuBd1raREpsOrjuRA1AazdD7EnK3LVJ3Rc7AL2pHOAeYuFs5EXFSP89xCrEXWdvYox0oF+CPmSY3cHY8kCp+CYXeIX5bAgdiU+fY/SjIm0OwBO/ga5N3FQ6an3PMzrbpk/88mLs7YtO+ySlmkawbJ+TjU2TpTLQHSDJdZRp29BtO3PQaj7eStmKghNZQb9rGFmuLO5JE+DQm5X+NjoB6oD5ngyvsYi4VR0dl7J0Q9uXbVT7K6QM69DvzDYxxH+9s+RRNwU5Bs5BY6zPla0/P9i0n5Eb35P9lalkm0HELa6gWGe+A3TVLC3MV2D39M7WYkSpIxMbzSbit57Wv7f9VoiqTu+XPVyhm0gFAOqQDis8uur6xhKWtQqa9zVAG3IOZw+QYLXb2yUZc2IbIDwurmrU+UBD3hGQBPhE12oHMObpOEln3j556SB9iHWY5SeeedU5MglUIRYs38n8QgjgU0ejBqDgBy9tyd3SNUwXmJo5YQgUnKFSyr+46WIbfVfp+A2psurAUPiT8EXaEVRiZxLhECNM1UmXaUQNjLnc6lGFCvRHCPNvyr5QZlr/j6PfW7GB2tiJ89lg0tAnnWTdXEbQM8lk9rnVHVLCzhNXCPKuJuUVR2PLOQ2G25KqYZMwRCpVcYxP89zxIjLr4sr9wCkILkbinOrrXhGwWir6/i+ZHdHQAsvQxyaSCsS9zLXPoQn0hr0As0TPEFQUCB120czCrbJ4iF9Y+ZGbF3yLblIMl7/n+VE5h2AzVX9Lg4zsK3w1P9jssDDfZawEPEf2TcW/RA6PvQXs8YzGNcE4QXrpZASnDEgnUf8Kfr+e+8ruMmmn7BCZJTOAJ2ODDu6HP3LzAcFlqEOyKCfAJ47wXKTKRWceBB8fhfonSDYRjC9h5pRFCToEgGntnOyfmLVVv3FsLF9eMMbldFQZdUOzWpKrM7ICGhy5r1284pQpKKdNLQ7jWEr7oheDje9FM5syinmuAHJFsfSMX4HDQnx5p74HCJaVBHyG8Ov/0nUan/k9ZeuEY0yAi4XyMyAM7JJ69ALBiJSxm6ln4EptHCwzfrtHkONNFCpBu8Cp0GUiF5YwjJZVIApDX+Z7VJFEdJQz2rO6014hoNVxl/pPnUVFZ7otOw8zt2r6PyNe0S1cqt8eqgAZYUC4RUgZPGLzvC1LnNHydC4rdYWq1tsuM+RbdyT9BOQOQ4UrEh4Je3tIQDaneX8AqI61BahgYOlcqTUmfyvDF31FhcbXWwpt/KdaeXypun8PwuFLMpi3lWQtyrhaHYfN2vF5htIX3v/CG4Gmm9nlGjfFYFxGLJKuDAJyMTMjZSTi4aMfVM7NIBTD3/1Lad20Qo0aAMXl/NOvs+UPT7C53v+EGICa+npcfDOtLLWmyuALM/vg5oe2fozqInBVn76uHy5WRS7ITM6ZJs9NlMeUf2MpCjBvFsl6MAOj6u/95bA83hFyDfIUscOOKNZrloDmZ1dgwWoZhiKZfEDNE6Y4qO+x8EmdTK69npIc7adP/MuVNQJys0/9OXn4XCcjymNbHlwEaUHhMi6jfmdawhec1M5HIYv5MK2mydefzC2HdlpNn0wxT9V+o1LdhBrB+SlF086FRPaWE5CHhJZ13Bu2qHW0KNEuqGxhjoAMb+PUNtIgzKHrw7bDFgOC+fGLILSd/taVljB99y8rIHQQZznD/xyFCKiqpuJYp5zrSRwh/qAyECeN0H83388G0xaxOEet7J9bkS2EOw3aEcY0QTqEDwDLCXMrpGbsoP8G7hPPcmJ7q9D5RnZQjpt6nJICeupoUb53enc7NeylaRFNT1WlW8zpmPhIp//fWw8eshNYvL0uM/vye+ahBvvMxCAdOjrtWb0b+h+3zMUTuUJV9sC0zkclZHeJX29ZWocGCL15R1pyI9CGuFAZyOwFI5E73zkb5uzBO1V9qWjADmvi+chsq8eaE6MFo/5YF952L1VX/ZyStm58RbIqmjBZzCM+csO6iNPyeva4YtMtpCUZN3X322dxFd/XJ6pipFv/67fs7eOnf81obOIiR0s/bYpxnZlRqttk57eZvyL7qv3Ho9n/qWjEEqTscnqA0jBBnT4plChVvdy+XleD8Ccft7igOEFWW9zjyX+Es6RL2bQo4/dIBIDSCrFW28YwbanyT7fcugE4r7HV/sHgdf5J5KUs1SQHeXJg/lGMo6AfJTEK0jHfPDgJ/OyQjS3Z+rICcLcRvbLWjA7iezDKh79W7JGBGK8MgwiCeE2nPCzpXTFmiEbpCmqXTZmBfafnTGd3BgeGA0FYlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": "RandomState(MT19937)"
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 5013504,
46
+ "_total_timesteps": 5000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": 42,
49
+ "action_noise": null,
50
+ "start_time": 1652154527.949909,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAC3YBj6cFvo+3itRvkUAQ79KJQA+lkRSvgAAAAAAAAAA5h0mvcdvST9Yh5W9RKmHv8lZ87yhlTq8AAAAAAAAAADG2hS+wcCsPupxBD6T7B6/aR4vvhq9Sj4AAAAAAAAAAIvdir41+00/evOovkcHJr9W4Be/KIBrvQAAAAAAAAAA28OUvuRwOT/TSiE+IOUYv4NSBL9eL2A+AAAAAAAAAADaEuG9OnR6PsKmZj1nRg+/2Xcfvp40BT4AAAAAAAAAAICbY70sgJo8cqymPd6aVr61dRK8H5+RPQAAAAAAAAAAgGFHvre1rT6K6aA+mTY1vyS7oL0S0Qk+AAAAAAAAAABmCHm9w3F4uoJnBDxEA5I5ipHCuo+QJToAAIA/AACAP+2LZz5RBlc/xewjPkvG675VGg0//KTFPQAAAAAAAAAAcwNOvsi0dD/8k8a+Kyk0v0nD975eYk6+AAAAAAAAAAAz8qE8ChdOueJq6DpakiY1elsGO0b2B7oAAIA/AACAP3MqDj7A8As/dilwvv1vUr/wKQc+6ghivgAAAAAAAAAAoGU3PnYwJT8eJom9BFVCvx8t4T4PlYe+AAAAAAAAAADN2Gm99tQluvRqJzmT3Hg0VmTIOwpQRrgAAIA/AACAP9PaED7Zweo+mEcdvkPNO7/WMH4+9mmIvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.0027007999999999477,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI81meBzdScUCUhpRSlIwBbJRLqIwBdJRHQLnTceeWfK91fZQoaAZoCWgPQwhg5GVN7MlxQJSGlFKUaBVLn2gWR0C503Kl+EytdX2UKGgGaAloD0MIzVzg8pjTcUCUhpRSlGgVS55oFkdAudN7E87p3XV9lChoBmgJaA9DCFkzMsjdqnFAlIaUUpRoFUugaBZHQLnTgA+Y+jd1fZQoaAZoCWgPQwjmzkwwHE5zQJSGlFKUaBVLkmgWR0C504n+l0o0dX2UKGgGaAloD0MIVOBkGzhbc0CUhpRSlGgVS6xoFkdAudOKECeVcHV9lChoBmgJaA9DCHXJOEYyoHBAlIaUUpRoFUukaBZHQLnTkLUCq6x1fZQoaAZoCWgPQwjPvvIgPVVzQJSGlFKUaBVLkmgWR0C505v8Q7LddX2UKGgGaAloD0MI9UvEW6dPcUCUhpRSlGgVS6toFkdAudPE4o7V8XV9lChoBmgJaA9DCEJg5dBiYnNAlIaUUpRoFUu9aBZHQLnT0+7lJYl1fZQoaAZoCWgPQwiEKcql8UhzQJSGlFKUaBVLp2gWR0C509cp5NXYdX2UKGgGaAloD0MIDi4dcx60cECUhpRSlGgVS6NoFkdAudPatq59VnV9lChoBmgJaA9DCB11dFyNcnNAlIaUUpRoFUubaBZHQLnT3QGwA2h1fZQoaAZoCWgPQwgxXB0A8fVwQJSGlFKUaBVLomgWR0C50+dd7fHhdX2UKGgGaAloD0MIHRzsTczec0CUhpRSlGgVS6JoFkdAudQCeCkGinV9lChoBmgJaA9DCIguqG+Z1XFAlIaUUpRoFUuQaBZHQLnUAsCDEm91fZQoaAZoCWgPQwgD6s2oORJyQJSGlFKUaBVLfWgWR0C51AHD3ueCdX2UKGgGaAloD0MIsd6oFaZicUCUhpRSlGgVS4poFkdAudQgnrpqynV9lChoBmgJaA9DCPYM4ZhlJnJAlIaUUpRoFUuQaBZHQLnUL3Jgb6x1fZQoaAZoCWgPQwg+WTFc3cdyQJSGlFKUaBVLtWgWR0C51DmluWKNdX2UKGgGaAloD0MIC2MLQQ6lckCUhpRSlGgVS7RoFkdAudQ466reZXV9lChoBmgJaA9DCHY3T3XIeHBAlIaUUpRoFUuaaBZHQLnUR3wCr951fZQoaAZoCWgPQwgrptJP+PJxQJSGlFKUaBVLsGgWR0C51EwvDgqFdX2UKGgGaAloD0MIVwkWh/NbdECUhpRSlGgVS8BoFkdAudRUA80UGnV9lChoBmgJaA9DCHdpw2Fp429AlIaUUpRoFUuTaBZHQLnUZ+DvmYB1fZQoaAZoCWgPQwhjCACOvdZyQJSGlFKUaBVLkmgWR0C51HUo0ALidX2UKGgGaAloD0MISrIOR1fzcUCUhpRSlGgVS5poFkdAudSBPAO8TXV9lChoBmgJaA9DCGa/7nTnuXFAlIaUUpRoFUuUaBZHQLnUgKIi1Rd1fZQoaAZoCWgPQwh00CUcuqFyQJSGlFKUaBVLmGgWR0C51JA2Q4jsdX2UKGgGaAloD0MIm1lLAeljc0CUhpRSlGgVS7ZoFkdAudSlZZB9kXV9lChoBmgJaA9DCBVSflJtdHNAlIaUUpRoFUugaBZHQLnUtul41P51fZQoaAZoCWgPQwj/lZUmZf1yQJSGlFKUaBVLoGgWR0C51LXvYvnKdX2UKGgGaAloD0MIvi8uVWnZckCUhpRSlGgVS7FoFkdAudTLAeq7y3V9lChoBmgJaA9DCLDo1mu6yXBAlIaUUpRoFUuaaBZHQLnUzpiqhlF1fZQoaAZoCWgPQwg0gSIW8dFxQJSGlFKUaBVLh2gWR0C51NGkWRA9dX2UKGgGaAloD0MInKIjufxYckCUhpRSlGgVS6RoFkdAudTnsjVx0nV9lChoBmgJaA9DCPSkTGooQ3NAlIaUUpRoFUuVaBZHQLnU8y6tknV1fZQoaAZoCWgPQwh6q65DdRZxQJSGlFKUaBVLm2gWR0C51PVZHNHIdX2UKGgGaAloD0MI+igjLsAKdECUhpRSlGgVS7NoFkdAudUCH58BuHV9lChoBmgJaA9DCO4ljdG6NHNAlIaUUpRoFUu0aBZHQLnVILThHb11fZQoaAZoCWgPQwi1bK0vkixwQJSGlFKUaBVLgmgWR0C51SenuRcNdX2UKGgGaAloD0MI86ykFZ/Mc0CUhpRSlGgVS6poFkdAudUs2VE/jnV9lChoBmgJaA9DCCTTodPznXFAlIaUUpRoFUuoaBZHQLnVODOTq0N1fZQoaAZoCWgPQwj4Nv3ZD1JyQJSGlFKUaBVLoWgWR0C51Tzqnm7rdX2UKGgGaAloD0MIFk890iAwc0CUhpRSlGgVS6hoFkdAudVEbGWD6HV9lChoBmgJaA9DCJzgm6YPvnJAlIaUUpRoFUulaBZHQLnVeXv6TGJ1fZQoaAZoCWgPQwiu1/SgYA1xQJSGlFKUaBVLumgWR0C51YENOM2ndX2UKGgGaAloD0MI7Q+U23alc0CUhpRSlGgVS5toFkdAudWLHIZIhHV9lChoBmgJaA9DCNldoKSAJHJAlIaUUpRoFUuNaBZHQLnVkqZML4N1fZQoaAZoCWgPQwiAtWrXhL5yQJSGlFKUaBVLqGgWR0C51ZQxi5NHdX2UKGgGaAloD0MI04cuqC94c0CUhpRSlGgVS75oFkdAudWZvP1L8XV9lChoBmgJaA9DCIoAp3exAnNAlIaUUpRoFUuMaBZHQLnVqyN4qw11fZQoaAZoCWgPQwjwFkhQ/ONyQJSGlFKUaBVLpGgWR0C51bofjjrBdX2UKGgGaAloD0MIcoqO5DIMdECUhpRSlGgVS61oFkdAudXCgElme3V9lChoBmgJaA9DCD//PXhtcHRAlIaUUpRoFUvVaBZHQLnVy2jfvWp1fZQoaAZoCWgPQwj21Oqr64pzQJSGlFKUaBVLoGgWR0C51d7KzRhMdX2UKGgGaAloD0MIE/OspJWocECUhpRSlGgVS51oFkdAudXmC2+fy3V9lChoBmgJaA9DCMb83NCUXnNAlIaUUpRoFUulaBZHQLnV6qlxffJ1fZQoaAZoCWgPQwiS6GUUi89yQJSGlFKUaBVLrWgWR0C51gYcm0E6dX2UKGgGaAloD0MI9n6jHbd4cECUhpRSlGgVS6doFkdAudYGg7HQyHV9lChoBmgJaA9DCIv9ZfekgXJAlIaUUpRoFUu0aBZHQLnWCe05U991fZQoaAZoCWgPQwgXEjC6/EtwQJSGlFKUaBVLhWgWR0C51hNU4rBkdX2UKGgGaAloD0MITGw+rs0ZckCUhpRSlGgVS4NoFkdAudYf5Lytm3V9lChoBmgJaA9DCL4yb9X1EnJAlIaUUpRoFUuTaBZHQLnWKJ5E+gV1fZQoaAZoCWgPQwhORwA3i3lNQJSGlFKUaBVLZmgWR0C51jS1JDmbdX2UKGgGaAloD0MI6lkQyvsob0CUhpRSlGgVS41oFkdAudY3tb9qDnV9lChoBmgJaA9DCEUvo1guH3FAlIaUUpRoFUueaBZHQLnWQzwMH8l1fZQoaAZoCWgPQwjHL7ySJFJyQJSGlFKUaBVLi2gWR0C51kZOi35OdX2UKGgGaAloD0MIrptSXqu9ckCUhpRSlGgVS6doFkdAudZ1DKHO8nV9lChoBmgJaA9DCCtoWmLlP3JAlIaUUpRoFUvPaBZHQLnWfMibDuV1fZQoaAZoCWgPQwjq6Lga2TlzQJSGlFKUaBVLqGgWR0C51odzCDVZdX2UKGgGaAloD0MInkXvVEDrc0CUhpRSlGgVS5poFkdAudaT9ycTanV9lChoBmgJaA9DCFSOyeK+4HNAlIaUUpRoFUu1aBZHQLnWqw5vLox1fZQoaAZoCWgPQwh/SwD+qbJxQJSGlFKUaBVLsGgWR0C51rFtO2y+dX2UKGgGaAloD0MIW+m12Vjfb0CUhpRSlGgVS5VoFkdAudaze54GEHV9lChoBmgJaA9DCOWZl8Ou53BAlIaUUpRoFUuYaBZHQLnWvqN6w+t1fZQoaAZoCWgPQwgUXKyowcZxQJSGlFKUaBVLfGgWR0C51sIxQBPsdX2UKGgGaAloD0MIuwuUFNhoc0CUhpRSlGgVS6doFkdAudbEClrM1XV9lChoBmgJaA9DCP6eWKcKFXFAlIaUUpRoFUueaBZHQLnW0X/YJ3R1fZQoaAZoCWgPQwidZKvLqRl0QJSGlFKUaBVLumgWR0C51td3np0PdX2UKGgGaAloD0MI2A+xwQI4ckCUhpRSlGgVS39oFkdAudbWWC2+f3V9lChoBmgJaA9DCBe6EoFqdnFAlIaUUpRoFUuoaBZHQLnW4v4ubqh1fZQoaAZoCWgPQwjdQlciUHpwQJSGlFKUaBVLnWgWR0C51vCS/0uldX2UKGgGaAloD0MIuYlamlvhckCUhpRSlGgVS6xoFkdAudb03irDInV9lChoBmgJaA9DCLLV5ZQAoXJAlIaUUpRoFUuSaBZHQLnXFAPNFBp1fZQoaAZoCWgPQwhpyHiUCnlyQJSGlFKUaBVLpWgWR0C51zI4MnZ1dX2UKGgGaAloD0MItaM4R92acUCUhpRSlGgVS59oFkdAuddB86V+qnV9lChoBmgJaA9DCAfQ7/t3bnNAlIaUUpRoFUu/aBZHQLnXXTc6/7B1fZQoaAZoCWgPQwioxks3icRuQJSGlFKUaBVLkGgWR0C512HrUsnRdX2UKGgGaAloD0MIbXAi+nWYcUCUhpRSlGgVS59oFkdAuddiNxVAA3V9lChoBmgJaA9DCOQuwhTlhHBAlIaUUpRoFUuZaBZHQLnXaLV4HHF1fZQoaAZoCWgPQwgcQwBw7PRyQJSGlFKUaBVLrGgWR0C513J3C9AYdX2UKGgGaAloD0MIObcJ9wpIc0CUhpRSlGgVS7toFkdAudd67Ciyp3V9lChoBmgJaA9DCFfRH5q5cnFAlIaUUpRoFUupaBZHQLnXfwkPczt1fZQoaAZoCWgPQwjJrN7htuVzQJSGlFKUaBVLmWgWR0C514D2OAAidX2UKGgGaAloD0MIBB4YQPgHc0CUhpRSlGgVS49oFkdAudeD974SH3V9lChoBmgJaA9DCCxF8pVA7XFAlIaUUpRoFUuEaBZHQLnXiv5xiod1fZQoaAZoCWgPQwiQ2y+frEdyQJSGlFKUaBVLr2gWR0C515FlwtJ4dX2UKGgGaAloD0MIRSqMLYRKcUCUhpRSlGgVS6hoFkdAudeQngHeJ3V9lChoBmgJaA9DCC2VtyOcXnNAlIaUUpRoFUuXaBZHQLnXmM9KVY91ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 1530,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
trial-1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:266ca3534d10233dba10fbbeda33c9d70e510ee2dd8a92dc2fe743674cbace63
3
+ size 84893
trial-1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85dc257c7e8b8c05bd032988a34b60d56c682716cbba972fd6e78c3a7352ee76
3
+ size 43201
trial-1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
trial-1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0