File size: 2,520 Bytes
63d1e12 9ef2a89 9ec1381 9ef2a89 9ec1381 9ef2a89 9ec1381 9ef2a89 9ec1381 9ef2a89 9ec1381 9ef2a89 9ec1381 63d1e12 9ef2a89 63d1e12 9ef2a89 63d1e12 9ef2a89 63d1e12 9ef2a89 63d1e12 9ef2a89 63d1e12 9ef2a89 63d1e12 9ef2a89 63d1e12 9ef2a89 63d1e12 9ef2a89 63d1e12 9ef2a89 63d1e12 9ef2a89 63d1e12 9ef2a89 63d1e12 9ef2a89 63d1e12 9ef2a89 63d1e12 9ef2a89 63d1e12 9ef2a89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
base_model: facebook/mms-1b-all
datasets:
- common_voice_17_0
library_name: transformers
license: cc-by-nc-4.0
metrics:
- wer
- bleu
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-mms-1b-CV17.0-training_set_variations
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: common_voice_17_0
type: common_voice_17_0
config: ta
split: validation[:5%]+validation[20%:25%]+validation[60%:65%]+validation[90%:]
args: ta
metrics:
- type: wer
value: 0.5119016249451032
name: Wer
- type: bleu
value: 0.24178033350654143
name: Bleu
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-mms-1b-CV17.0-training_set_variations
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the common_voice_17_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4958
- Wer: 0.5119
- Cer: 0.0973
- Bleu: 0.2418
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.15
- training_steps: 2000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Bleu |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|
| 6.9079 | 100.0 | 100 | 0.3463 | 0.4393 | 0.0786 | 0.3177 |
| 0.0658 | 200.0 | 200 | 0.3912 | 0.4538 | 0.0839 | 0.3158 |
| 0.0346 | 300.0 | 300 | 0.4707 | 0.5046 | 0.0947 | 0.2477 |
| 0.0265 | 400.0 | 400 | 0.4906 | 0.5137 | 0.0967 | 0.2393 |
| 0.0184 | 500.0 | 500 | 0.5407 | 0.5240 | 0.1005 | 0.2301 |
| 0.0158 | 600.0 | 600 | 0.4958 | 0.5119 | 0.0973 | 0.2418 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1
|