--- base_model: facebook/mms-1b-all datasets: - common_voice_17_0 library_name: transformers license: cc-by-nc-4.0 metrics: - wer - bleu tags: - generated_from_trainer model-index: - name: wav2vec2-mms-1b-CV17.0-training_set_variations results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: ta split: validation args: ta metrics: - type: wer value: 0.41655589677774213 name: Wer - type: bleu value: 0.3602695476100989 name: Bleu --- # wav2vec2-mms-1b-CV17.0-training_set_variations This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3166 - Wer: 0.4166 - Cer: 0.0689 - Bleu: 0.3603 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.15 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Bleu | |:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:| | 11.8671 | 3.125 | 50 | 3.8104 | 1.0011 | 0.9249 | 0.0 | | 1.5965 | 6.25 | 100 | 0.2796 | 0.4122 | 0.0680 | 0.3517 | | 0.2054 | 9.375 | 150 | 0.2320 | 0.3751 | 0.0620 | 0.4040 | | 0.1702 | 12.5 | 200 | 0.2367 | 0.3794 | 0.0633 | 0.3939 | | 0.1495 | 15.625 | 250 | 0.2527 | 0.4168 | 0.0680 | 0.3457 | | 0.1457 | 18.75 | 300 | 0.2536 | 0.3973 | 0.0662 | 0.3723 | | 0.1264 | 21.875 | 350 | 0.2765 | 0.4175 | 0.0693 | 0.3546 | | 0.1092 | 25.0 | 400 | 0.2711 | 0.4032 | 0.0673 | 0.3701 | | 0.0952 | 28.125 | 450 | 0.2828 | 0.4139 | 0.0691 | 0.3605 | | 0.0919 | 31.25 | 500 | 0.2972 | 0.4283 | 0.0721 | 0.3355 | | 0.0909 | 34.375 | 550 | 0.2971 | 0.4155 | 0.0686 | 0.3567 | | 0.0744 | 37.5 | 600 | 0.3086 | 0.4241 | 0.0705 | 0.3461 | | 0.069 | 40.625 | 650 | 0.3166 | 0.4166 | 0.0689 | 0.3603 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1