--- base_model: facebook/mms-1b-all datasets: - common_voice_17_0 library_name: transformers license: cc-by-nc-4.0 metrics: - wer - bleu tags: - generated_from_trainer model-index: - name: wav2vec2-mms-1b-CV17.0-training_set_variations results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: ta split: validation args: ta metrics: - type: wer value: 0.4250355227574827 name: Wer - type: bleu value: 0.3461897882903843 name: Bleu --- # wav2vec2-mms-1b-CV17.0-training_set_variations This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3320 - Wer: 0.4250 - Cer: 0.0720 - Bleu: 0.3462 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.15 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Bleu | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 11.5156 | 6.25 | 50 | 5.5076 | 1.0 | 0.9701 | 0.0 | | 1.8133 | 12.5 | 100 | 0.2759 | 0.4067 | 0.0674 | 0.3610 | | 0.1751 | 18.75 | 150 | 0.2414 | 0.3828 | 0.0639 | 0.3924 | | 0.1315 | 25.0 | 200 | 0.2556 | 0.3887 | 0.0649 | 0.3901 | | 0.1 | 31.25 | 250 | 0.2842 | 0.4168 | 0.0700 | 0.3520 | | 0.0842 | 37.5 | 300 | 0.2997 | 0.4133 | 0.0699 | 0.3571 | | 0.0717 | 43.75 | 350 | 0.3210 | 0.4260 | 0.0732 | 0.3431 | | 0.0608 | 50.0 | 400 | 0.3320 | 0.4250 | 0.0720 | 0.3462 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1