--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer - bleu model-index: - name: wav2vec2-mms-1b-CV17.0-training_set_variations results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: ta split: validation args: ta metrics: - name: Wer type: wer value: 0.3597180870859695 - name: Bleu type: bleu value: 0.4226157099926465 --- # wav2vec2-mms-1b-CV17.0-training_set_variations This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2047 - Wer: 0.3597 - Cer: 0.0579 - Bleu: 0.4226 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.15 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Bleu | |:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:| | 6.3615 | 0.3906 | 100 | 0.2954 | 0.4162 | 0.0682 | 0.3508 | | 0.2115 | 0.7812 | 200 | 0.2266 | 0.3822 | 0.0619 | 0.3888 | | 0.1868 | 1.1719 | 300 | 0.2227 | 0.3755 | 0.0608 | 0.3981 | | 0.1913 | 1.5625 | 400 | 0.2274 | 0.3912 | 0.0637 | 0.3779 | | 0.1896 | 1.9531 | 500 | 0.2263 | 0.3858 | 0.0631 | 0.3867 | | 0.1769 | 2.3438 | 600 | 0.2176 | 0.3785 | 0.0618 | 0.3942 | | 0.1752 | 2.7344 | 700 | 0.2162 | 0.3816 | 0.0614 | 0.3887 | | 0.1777 | 3.125 | 800 | 0.2098 | 0.3606 | 0.0582 | 0.4260 | | 0.1747 | 3.5156 | 900 | 0.2078 | 0.3657 | 0.0585 | 0.4111 | | 0.1672 | 3.9062 | 1000 | 0.2075 | 0.3770 | 0.0595 | 0.3920 | | 0.1583 | 4.2969 | 1100 | 0.2060 | 0.3631 | 0.0580 | 0.4137 | | 0.1713 | 4.6875 | 1200 | 0.2064 | 0.3664 | 0.0587 | 0.4118 | | 0.1563 | 5.0781 | 1300 | 0.2047 | 0.3597 | 0.0579 | 0.4226 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1