--- base_model: facebook/mms-1b-all datasets: - common_voice_17_0 library_name: transformers license: cc-by-nc-4.0 metrics: - wer - bleu tags: - generated_from_trainer model-index: - name: wav2vec2-mms-1b-CV17.0-training_set_variations results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: ta split: validation args: ta metrics: - type: wer value: 0.45588302699729566 name: Wer - type: bleu value: 0.30120570288375 name: Bleu --- # wav2vec2-mms-1b-CV17.0-training_set_variations This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4242 - Wer: 0.4559 - Cer: 0.0764 - Bleu: 0.3012 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.15 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Bleu | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 13.1596 | 12.5 | 50 | 6.8694 | 1.0 | 0.9625 | 0.0 | | 3.2131 | 25.0 | 100 | 0.4085 | 0.4707 | 0.0784 | 0.2830 | | 0.1719 | 37.5 | 150 | 0.2583 | 0.3920 | 0.0650 | 0.3818 | | 0.0962 | 50.0 | 200 | 0.2869 | 0.4118 | 0.0682 | 0.3547 | | 0.0648 | 62.5 | 250 | 0.3209 | 0.4213 | 0.0696 | 0.3435 | | 0.0613 | 75.0 | 300 | 0.3404 | 0.4454 | 0.0742 | 0.3200 | | 0.0515 | 87.5 | 350 | 0.3744 | 0.4385 | 0.0734 | 0.3289 | | 0.0426 | 100.0 | 400 | 0.3835 | 0.4479 | 0.0748 | 0.3078 | | 0.0384 | 112.5 | 450 | 0.3776 | 0.4432 | 0.0746 | 0.3243 | | 0.0363 | 125.0 | 500 | 0.4053 | 0.4371 | 0.0732 | 0.3251 | | 0.0385 | 137.5 | 550 | 0.4225 | 0.4520 | 0.0772 | 0.3115 | | 0.0343 | 150.0 | 600 | 0.4295 | 0.4463 | 0.0758 | 0.3167 | | 0.0371 | 162.5 | 650 | 0.4242 | 0.4559 | 0.0764 | 0.3012 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1