--- base_model: mistralai/Mistral-7B-Instruct-v0.3 library_name: peft license: apache-2.0 tags: - generated_from_trainer model-index: - name: pgd_mistral_8bits_lr0.0002_alpha32_rk4_do0.1_wd1.0e-02 results: [] --- # pgd_mistral_8bits_lr0.0002_alpha32_rk4_do0.1_wd1.0e-02 This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7793 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.0296 | 0.9778 | 11 | 2.3415 | | 1.8108 | 1.9556 | 22 | 1.1645 | | 1.0071 | 2.9333 | 33 | 0.8704 | | 0.7805 | 4.0 | 45 | 0.8074 | | 0.7974 | 4.9778 | 56 | 0.7788 | | 0.7645 | 5.9556 | 67 | 0.7678 | | 0.7508 | 6.9333 | 78 | 0.7640 | | 0.675 | 8.0 | 90 | 0.7635 | | 0.7262 | 8.9778 | 101 | 0.7708 | | 0.6817 | 9.7778 | 110 | 0.7793 | ### Framework versions - PEFT 0.10.1.dev0 - Transformers 4.43.4 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1