--- tags: - spacy - token-classification language: - en license: mit model-index: - name: en_skillner results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.5991309071 - name: NER Recall type: recall value: 0.5768828452 - name: NER F Score type: f_score value: 0.5877964295 --- A Named Entity Recognition (NER) model to extract SKILL, EXPERIENCE and BENEFIT from job adverts. | Feature | Description | | --- | --- | | **Name** | `en_skillner` | | **Version** | `3.5.0` | | **spaCy** | `>=3.5.3,<3.6.0` | | **Default Pipeline** | `tok2vec`, `tagger`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` | | **Components** | `tok2vec`, `tagger`, `parser`, `senter`, `attribute_ruler`, `lemmatizer`, `ner` | | **Vectors** | 514157 keys, 514157 unique vectors (300 dimensions) | | **Sources** | [OntoNotes 5](https://catalog.ldc.upenn.edu/LDC2013T19) (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston)
[ClearNLP Constituent-to-Dependency Conversion](https://github.com/clir/clearnlp-guidelines/blob/master/md/components/dependency_conversion.md) (Emory University)
[WordNet 3.0](https://wordnet.princeton.edu/) (Princeton University)
[Explosion Vectors (OSCAR 2109 + Wikipedia + OpenSubtitles + WMT News Crawl)](https://github.com/explosion/spacy-vectors-builder) (Explosion) | | **License** | `MIT` | | **Author** | [nestauk](https://explosion.ai) | ### Label Scheme
View label scheme (3 labels for 1 components) | Component | Labels | | --- | --- | | **`ner`** | `SKILL`, `EXPERIENCE`, `BENEFIT` |
### Accuracy | Type | Score | | --- | --- | | `ENTS_P` | 59.91 | | `ENTS_R` | 57.69 | | `ENTS_F` | 58.78 |