ekurtic
commited on
Commit
•
e997309
1
Parent(s):
d9bf1da
add readme
Browse files
README.md
ADDED
@@ -0,0 +1,419 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- fp8
|
4 |
+
- vllm
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
- de
|
8 |
+
- fr
|
9 |
+
- it
|
10 |
+
- pt
|
11 |
+
- hi
|
12 |
+
- es
|
13 |
+
- th
|
14 |
+
pipeline_tag: text-generation
|
15 |
+
license: llama3.1
|
16 |
+
base_model: nvidia/Llama-3.1-Nemotron-70B-Instruct-HF
|
17 |
+
---
|
18 |
+
|
19 |
+
# Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic
|
20 |
+
|
21 |
+
## Model Overview
|
22 |
+
- **Model Architecture:** Llama-3.1-Nemotron
|
23 |
+
- **Input:** Text
|
24 |
+
- **Output:** Text
|
25 |
+
- **Model Optimizations:**
|
26 |
+
- **Weight quantization:** FP8
|
27 |
+
- **Activation quantization:** FP8
|
28 |
+
- **Intended Use Cases:** Intended for commercial and research use in multiple languages. Similarly to [Llama-3.1-Nemotron-70B-Instruct](https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF), this model is intended for assistant-like chat.
|
29 |
+
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
|
30 |
+
- **Release Date:** 10/17/2024
|
31 |
+
- **Version:** 1.0
|
32 |
+
- **License(s):** [llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)
|
33 |
+
- **Model Developers:** Neural Magic
|
34 |
+
|
35 |
+
This model is a quantized version of [Llama-3.1-Nemotron-70B-Instruct](https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF).
|
36 |
+
It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model, including multiple-choice, math reasoning, and open-ended text generation.
|
37 |
+
Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic achieves 99.41% recovery for the Arena-Hard evaluation, 100% for OpenLLM v1 (using Meta's prompting when available), and ToDo for OpenLLM v2.
|
38 |
+
|
39 |
+
### Model Optimizations
|
40 |
+
|
41 |
+
This model was obtained by quantizing the weights and activations of [Llama-3.1-Nemotron-70B-Instruct](https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF) to FP8 data type, ready for inference with vLLM built from source.
|
42 |
+
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
|
43 |
+
|
44 |
+
Only the weights and activations of the linear operators within transformers blocks are quantized. Symmetric per-channel quantization is applied, in which a linear scaling per output dimension maps the FP8 representations of the quantized weights and activations. Activations are also quantized on a per-token dynamic basis.
|
45 |
+
|
46 |
+
## Deployment
|
47 |
+
|
48 |
+
### Use with vLLM
|
49 |
+
|
50 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
51 |
+
|
52 |
+
```python
|
53 |
+
from vllm import LLM, SamplingParams
|
54 |
+
from transformers import AutoTokenizer
|
55 |
+
|
56 |
+
model_id = "neuralmagic/Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic"
|
57 |
+
number_gpus = 2
|
58 |
+
|
59 |
+
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
|
60 |
+
|
61 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
62 |
+
|
63 |
+
messages = [
|
64 |
+
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
65 |
+
{"role": "user", "content": "Who are you?"},
|
66 |
+
]
|
67 |
+
|
68 |
+
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
69 |
+
|
70 |
+
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
|
71 |
+
|
72 |
+
outputs = llm.generate(prompts, sampling_params)
|
73 |
+
|
74 |
+
generated_text = outputs[0].outputs[0].text
|
75 |
+
print(generated_text)
|
76 |
+
```
|
77 |
+
|
78 |
+
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
79 |
+
|
80 |
+
## Creation
|
81 |
+
|
82 |
+
This model was created by applying [LLM-Compressor](https://github.com/vllm-project/llm-compressor), as presented in the code snipet below.
|
83 |
+
|
84 |
+
```python
|
85 |
+
import torch
|
86 |
+
|
87 |
+
from transformers import AutoTokenizer
|
88 |
+
|
89 |
+
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
|
90 |
+
from llmcompressor.transformers.compression.helpers import ( # noqa
|
91 |
+
calculate_offload_device_map,
|
92 |
+
custom_offload_device_map,
|
93 |
+
)
|
94 |
+
|
95 |
+
recipe = """
|
96 |
+
quant_stage:
|
97 |
+
quant_modifiers:
|
98 |
+
QuantizationModifier:
|
99 |
+
ignore: ["lm_head"]
|
100 |
+
config_groups:
|
101 |
+
group_0:
|
102 |
+
weights:
|
103 |
+
num_bits: 8
|
104 |
+
type: float
|
105 |
+
strategy: channel
|
106 |
+
dynamic: false
|
107 |
+
symmetric: true
|
108 |
+
input_activations:
|
109 |
+
num_bits: 8
|
110 |
+
type: float
|
111 |
+
strategy: token
|
112 |
+
dynamic: true
|
113 |
+
symmetric: true
|
114 |
+
targets: ["Linear"]
|
115 |
+
"""
|
116 |
+
|
117 |
+
model_stub = "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF"
|
118 |
+
model_name = model_stub.split("/")[-1]
|
119 |
+
|
120 |
+
device_map = calculate_offload_device_map(
|
121 |
+
model_stub, reserve_for_hessians=False, num_gpus=1, torch_dtype="auto"
|
122 |
+
)
|
123 |
+
|
124 |
+
model = SparseAutoModelForCausalLM.from_pretrained(
|
125 |
+
model_stub, torch_dtype="auto", device_map=device_map
|
126 |
+
)
|
127 |
+
|
128 |
+
output_dir = f"./{model_name}-FP8-dynamic"
|
129 |
+
|
130 |
+
oneshot(
|
131 |
+
model=model,
|
132 |
+
recipe=recipe,
|
133 |
+
output_dir=output_dir,
|
134 |
+
save_compressed=True,
|
135 |
+
tokenizer=AutoTokenizer.from_pretrained(model_stub),
|
136 |
+
)
|
137 |
+
```
|
138 |
+
|
139 |
+
## Evaluation
|
140 |
+
|
141 |
+
This model was evaluated on the well-known Arena-Hard, OpenLLM v1, and OpenLLM v2.
|
142 |
+
In all cases, model outputs were generated with the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
143 |
+
|
144 |
+
Arena-Hard evaluations were conducted using the [Arena-Hard-Auto](https://github.com/lmarena/arena-hard-auto) repository.
|
145 |
+
|
146 |
+
OpenLLM v1 and v2 evaluations were conducted using Neural Magic's fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct).
|
147 |
+
This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-70B-Instruct-evals) and a few fixes to OpenLLM v2 tasks.
|
148 |
+
|
149 |
+
### Accuracy
|
150 |
+
|
151 |
+
<table>
|
152 |
+
<tr>
|
153 |
+
<td><strong>Benchmark</strong>
|
154 |
+
</td>
|
155 |
+
<td><strong>nvidia/Llama-3.1-Nemotron-70B-Instruct-HF</strong>
|
156 |
+
</td>
|
157 |
+
<td><strong>neuralmagic/Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic (this model)</strong>
|
158 |
+
</td>
|
159 |
+
<td><strong>Recovery</strong>
|
160 |
+
</td>
|
161 |
+
</tr>
|
162 |
+
<tr>
|
163 |
+
<td><strong>Arena Hard</strong>
|
164 |
+
</td>
|
165 |
+
<td>85.0
|
166 |
+
</td>
|
167 |
+
<td>84.5
|
168 |
+
</td>
|
169 |
+
<td>99.41%
|
170 |
+
</td>
|
171 |
+
</tr>
|
172 |
+
<tr>
|
173 |
+
<td><strong>OpenLLM v1</strong>
|
174 |
+
</td>
|
175 |
+
</tr>
|
176 |
+
<tr>
|
177 |
+
<td>MMLU (5-shot)
|
178 |
+
</td>
|
179 |
+
<td>83.51
|
180 |
+
</td>
|
181 |
+
<td>83.49
|
182 |
+
</td>
|
183 |
+
<td>99.97%
|
184 |
+
</td>
|
185 |
+
</tr>
|
186 |
+
<tr>
|
187 |
+
<td>MMLU-cot (0-shot)
|
188 |
+
</td>
|
189 |
+
<td>85.89
|
190 |
+
</td>
|
191 |
+
<td>86.18
|
192 |
+
</td>
|
193 |
+
<td>100.33%
|
194 |
+
</td>
|
195 |
+
</tr>
|
196 |
+
<tr>
|
197 |
+
<td>ARC Challenge (0-shot)
|
198 |
+
</td>
|
199 |
+
<td>93.09
|
200 |
+
</td>
|
201 |
+
<td>93.09
|
202 |
+
</td>
|
203 |
+
<td>100%
|
204 |
+
</td>
|
205 |
+
</tr>
|
206 |
+
<tr>
|
207 |
+
<td>GSM-8K-cot (8-shot, strict-match)
|
208 |
+
</td>
|
209 |
+
<td>70.13
|
210 |
+
</td>
|
211 |
+
<td>69.98
|
212 |
+
</td>
|
213 |
+
<td>99.78%
|
214 |
+
</td>
|
215 |
+
</tr>
|
216 |
+
<tr>
|
217 |
+
<td>Hellaswag (10-shot)
|
218 |
+
</td>
|
219 |
+
<td>87.39
|
220 |
+
</td>
|
221 |
+
<td>87.22
|
222 |
+
</td>
|
223 |
+
<td>99.80%
|
224 |
+
</td>
|
225 |
+
</tr>
|
226 |
+
<tr>
|
227 |
+
<td>Winogrande (5-shot)
|
228 |
+
</td>
|
229 |
+
<td>84.93
|
230 |
+
</td>
|
231 |
+
<td>84.93
|
232 |
+
</td>
|
233 |
+
<td>100%
|
234 |
+
</td>
|
235 |
+
</tr>
|
236 |
+
<tr>
|
237 |
+
<td>TruthfulQA (0-shot, mc2)
|
238 |
+
</td>
|
239 |
+
<td>55.97
|
240 |
+
</td>
|
241 |
+
<td>57.12
|
242 |
+
</td>
|
243 |
+
<td>102.05%
|
244 |
+
</td>
|
245 |
+
</tr>
|
246 |
+
<tr>
|
247 |
+
<td><strong>Average</strong>
|
248 |
+
</td>
|
249 |
+
<td><strong>80.13</strong>
|
250 |
+
</td>
|
251 |
+
<td><strong>80.29</strong>
|
252 |
+
</td>
|
253 |
+
<td><strong>100.2%</strong>
|
254 |
+
</td>
|
255 |
+
</tr>
|
256 |
+
<tr>
|
257 |
+
<td><strong>OpenLLM v2</strong>
|
258 |
+
</td>
|
259 |
+
</tr>
|
260 |
+
<tr>
|
261 |
+
<td>MMLU-Pro (5-shot)
|
262 |
+
</td>
|
263 |
+
<td>ToDo
|
264 |
+
</td>
|
265 |
+
<td>ToDo
|
266 |
+
</td>
|
267 |
+
<td>ToDo
|
268 |
+
</td>
|
269 |
+
</tr>
|
270 |
+
<tr>
|
271 |
+
<td>IFEval (0-shot)
|
272 |
+
</td>
|
273 |
+
<td>73.32
|
274 |
+
</td>
|
275 |
+
<td>74.08
|
276 |
+
</td>
|
277 |
+
<td>101.02%
|
278 |
+
</td>
|
279 |
+
</tr>
|
280 |
+
<tr>
|
281 |
+
<td>BBH (3-shot)
|
282 |
+
</td>
|
283 |
+
<td>ToDo
|
284 |
+
</td>
|
285 |
+
<td>ToDo
|
286 |
+
</td>
|
287 |
+
<td>ToDo
|
288 |
+
</td>
|
289 |
+
</tr>
|
290 |
+
<tr>
|
291 |
+
<td>Math-lvl-5 (4-shot)
|
292 |
+
</td>
|
293 |
+
<td>23.85
|
294 |
+
</td>
|
295 |
+
<td>21.78
|
296 |
+
</td>
|
297 |
+
<td>91.32%
|
298 |
+
</td>
|
299 |
+
</tr>
|
300 |
+
<tr>
|
301 |
+
<td>GPQA (0-shot)
|
302 |
+
</td>
|
303 |
+
<td>34.05
|
304 |
+
</td>
|
305 |
+
<td>35.97
|
306 |
+
</td>
|
307 |
+
<td>105.63%
|
308 |
+
</td>
|
309 |
+
</tr>
|
310 |
+
<tr>
|
311 |
+
<td>MuSR (0-shot)
|
312 |
+
</td>
|
313 |
+
<td>13.5
|
314 |
+
</td>
|
315 |
+
<td>13.35
|
316 |
+
</td>
|
317 |
+
<td>98.88%
|
318 |
+
</td>
|
319 |
+
</tr>
|
320 |
+
<tr>
|
321 |
+
<td><strong>Average</strong>
|
322 |
+
</td>
|
323 |
+
<td><strong>ToDo</strong>
|
324 |
+
</td>
|
325 |
+
<td><strong>ToDo</strong>
|
326 |
+
</td>
|
327 |
+
<td><strong>ToDo</strong>
|
328 |
+
</td>
|
329 |
+
</tr>
|
330 |
+
</table>
|
331 |
+
|
332 |
+
### Reproduction
|
333 |
+
|
334 |
+
The results were obtained using the following commands:
|
335 |
+
|
336 |
+
#### MMLU
|
337 |
+
```
|
338 |
+
lm_eval \
|
339 |
+
--model vllm \
|
340 |
+
--model_args pretrained="neuralmagic/Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2 \
|
341 |
+
--tasks mmlu \
|
342 |
+
--num_fewshot 5 \
|
343 |
+
--batch_size auto
|
344 |
+
```
|
345 |
+
|
346 |
+
#### MMLU-cot
|
347 |
+
```
|
348 |
+
lm_eval \
|
349 |
+
--model vllm \
|
350 |
+
--model_args pretrained="neuralmagic/Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2 \
|
351 |
+
--tasks mmlu_cot_0shot_llama_3.1_instruct \
|
352 |
+
--apply_chat_template \
|
353 |
+
--num_fewshot 0 \
|
354 |
+
--batch_size auto
|
355 |
+
```
|
356 |
+
|
357 |
+
#### ARC-Challenge
|
358 |
+
```
|
359 |
+
lm_eval \
|
360 |
+
--model vllm \
|
361 |
+
--model_args pretrained="neuralmagic/Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2 \
|
362 |
+
--tasks arc_challenge_llama_3.1_instruct \
|
363 |
+
--apply_chat_template \
|
364 |
+
--num_fewshot 0 \
|
365 |
+
--batch_size auto
|
366 |
+
```
|
367 |
+
|
368 |
+
#### GSM-8K
|
369 |
+
```
|
370 |
+
lm_eval \
|
371 |
+
--model vllm \
|
372 |
+
--model_args pretrained="neuralmagic/Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2 \
|
373 |
+
--tasks gsm8k_cot_llama_3.1_instruct \
|
374 |
+
--apply_chat_template \
|
375 |
+
--fewshot_as_multiturn \
|
376 |
+
--num_fewshot 8 \
|
377 |
+
--batch_size auto
|
378 |
+
```
|
379 |
+
|
380 |
+
#### Hellaswag
|
381 |
+
```
|
382 |
+
lm_eval \
|
383 |
+
--model vllm \
|
384 |
+
--model_args pretrained="neuralmagic/Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2 \
|
385 |
+
--tasks hellaswag \
|
386 |
+
--num_fewshot 10 \
|
387 |
+
--batch_size auto
|
388 |
+
```
|
389 |
+
|
390 |
+
#### Winogrande
|
391 |
+
```
|
392 |
+
lm_eval \
|
393 |
+
--model vllm \
|
394 |
+
--model_args pretrained="neuralmagic/Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2 \
|
395 |
+
--tasks winogrande \
|
396 |
+
--num_fewshot 5 \
|
397 |
+
--batch_size auto
|
398 |
+
```
|
399 |
+
|
400 |
+
#### TruthfulQA
|
401 |
+
```
|
402 |
+
lm_eval \
|
403 |
+
--model vllm \
|
404 |
+
--model_args pretrained="neuralmagic/Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2 \
|
405 |
+
--tasks truthfulqa \
|
406 |
+
--num_fewshot 0 \
|
407 |
+
--batch_size auto
|
408 |
+
```
|
409 |
+
|
410 |
+
#### OpenLLM v2
|
411 |
+
```
|
412 |
+
lm_eval \
|
413 |
+
--model vllm \
|
414 |
+
--model_args pretrained="neuralmagic/Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True \
|
415 |
+
--apply_chat_template \
|
416 |
+
--fewshot_as_multiturn \
|
417 |
+
--tasks leaderboard \
|
418 |
+
--batch_size auto
|
419 |
+
```
|