alexmarques
commited on
Commit
•
c8857c0
1
Parent(s):
0dbc179
Update README.md
Browse files
README.md
CHANGED
@@ -35,8 +35,8 @@ It achieves an average score of 67.57 on the [OpenLLM](https://huggingface.co/sp
|
|
35 |
This model was obtained by quantizing the weights of [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) to INT4 data type.
|
36 |
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%.
|
37 |
|
38 |
-
Only the weights of the linear operators within transformers blocks are quantized. Symmetric per-channel quantization is applied, in which a linear scaling per output dimension maps the
|
39 |
-
|
40 |
|
41 |
|
42 |
## Deployment
|
@@ -80,45 +80,40 @@ Although AutoGPTQ was used for this particular model, Neural Magic is transition
|
|
80 |
|
81 |
```python
|
82 |
from transformers import AutoTokenizer
|
83 |
-
from
|
84 |
-
from
|
85 |
-
from llmcompressor.modifiers.quantization import GPTQModifier
|
86 |
-
import random
|
87 |
|
88 |
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
89 |
|
90 |
-
num_samples =
|
91 |
-
max_seq_len =
|
92 |
|
93 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
94 |
|
95 |
-
preprocess_fn
|
|
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
ds = dataset.shuffle().select(range(num_samples))
|
100 |
ds = ds.map(preprocess_fn)
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
107 |
)
|
108 |
|
109 |
-
model =
|
110 |
model_id,
|
|
|
111 |
device_map="auto",
|
112 |
-
trust_remote_code=True,
|
113 |
)
|
114 |
|
115 |
-
|
116 |
-
model=model,
|
117 |
-
dataset=ds,
|
118 |
-
recipe=recipe,
|
119 |
-
max_seq_length=max_seq_len,
|
120 |
-
num_calibration_samples=num_samples,
|
121 |
-
)
|
122 |
model.save_pretrained("Meta-Llama-3.1-8B-Instruct-quantized.w4a16")
|
123 |
```
|
124 |
|
@@ -126,14 +121,9 @@ model.save_pretrained("Meta-Llama-3.1-8B-Instruct-quantized.w4a16")
|
|
126 |
|
127 |
## Evaluation
|
128 |
|
129 |
-
The model was evaluated on
|
130 |
-
|
131 |
-
|
132 |
-
--model vllm \
|
133 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.4,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
|
134 |
-
--tasks openllm \
|
135 |
-
--batch_size auto
|
136 |
-
```
|
137 |
|
138 |
### Accuracy
|
139 |
|
@@ -143,48 +133,50 @@ lm_eval \
|
|
143 |
<td><strong>Benchmark</strong>
|
144 |
</td>
|
145 |
<td><strong>Meta-Llama-3.1-8B-Instruct </strong>
|
146 |
-
</td>
|
147 |
-
<td><strong>hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4</strong>
|
148 |
</td>
|
149 |
<td><strong>Meta-Llama-3.1-8B-Instruct-quantized.w4a16 (this model)</strong>
|
150 |
</td>
|
151 |
-
<td><strong>Recovery
|
152 |
</td>
|
153 |
</tr>
|
154 |
<tr>
|
155 |
<td>MMLU (5-shot)
|
156 |
</td>
|
157 |
-
<td>
|
158 |
-
</td>
|
159 |
-
<td>66.33
|
160 |
</td>
|
161 |
-
<td>
|
162 |
</td>
|
163 |
-
<td>
|
164 |
</td>
|
165 |
</tr>
|
166 |
<tr>
|
167 |
-
<td>
|
168 |
</td>
|
169 |
-
<td>
|
170 |
</td>
|
171 |
-
<td>
|
172 |
</td>
|
173 |
-
<td>
|
174 |
-
</td>
|
175 |
-
<td>98.16%
|
176 |
</td>
|
177 |
</tr>
|
178 |
<tr>
|
179 |
-
<td>
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
</td>
|
181 |
-
|
|
|
|
|
182 |
</td>
|
183 |
-
<td>
|
184 |
</td>
|
185 |
-
<td>
|
186 |
</td>
|
187 |
-
<td>
|
188 |
</td>
|
189 |
</tr>
|
190 |
<tr>
|
@@ -192,11 +184,9 @@ lm_eval \
|
|
192 |
</td>
|
193 |
<td>80.01
|
194 |
</td>
|
195 |
-
<td>
|
196 |
</td>
|
197 |
-
<td>
|
198 |
-
</td>
|
199 |
-
<td>98.80%
|
200 |
</td>
|
201 |
</tr>
|
202 |
<tr>
|
@@ -204,35 +194,109 @@ lm_eval \
|
|
204 |
</td>
|
205 |
<td>77.90
|
206 |
</td>
|
207 |
-
<td>76.
|
208 |
-
</td>
|
209 |
-
<td>76.08
|
210 |
</td>
|
211 |
-
<td>
|
212 |
</td>
|
213 |
</tr>
|
214 |
<tr>
|
215 |
-
<td>TruthfulQA (0-shot)
|
216 |
</td>
|
217 |
<td>54.04
|
218 |
</td>
|
219 |
-
<td>
|
220 |
</td>
|
221 |
-
<td>
|
222 |
-
</td>
|
223 |
-
<td>92.8%
|
224 |
</td>
|
225 |
</tr>
|
226 |
<tr>
|
227 |
<td><strong>Average</strong>
|
228 |
</td>
|
229 |
-
<td><strong>
|
230 |
-
</td>
|
231 |
-
<td><strong>67.64</strong>
|
232 |
</td>
|
233 |
-
<td><strong>
|
234 |
</td>
|
235 |
-
<td><strong>97.
|
236 |
</td>
|
237 |
</tr>
|
238 |
-
</table>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
This model was obtained by quantizing the weights of [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) to INT4 data type.
|
36 |
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%.
|
37 |
|
38 |
+
Only the weights of the linear operators within transformers blocks are quantized. Symmetric per-channel quantization is applied, in which a linear scaling per output dimension maps the INT8 and floating point representations of the quantized weights.
|
39 |
+
[AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ) is used for quantization with 10% damping factor and 768 sequences taken from Neural Magic's [LLM compression calibration dataset](https://huggingface.co/datasets/neuralmagic/LLM_compression_calibration).
|
40 |
|
41 |
|
42 |
## Deployment
|
|
|
80 |
|
81 |
```python
|
82 |
from transformers import AutoTokenizer
|
83 |
+
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
84 |
+
from datasets import load_dataset
|
|
|
|
|
85 |
|
86 |
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
87 |
|
88 |
+
num_samples = 756
|
89 |
+
max_seq_len = 4064
|
90 |
|
91 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
92 |
|
93 |
+
def preprocess_fn(example):
|
94 |
+
return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)}
|
95 |
|
96 |
+
ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train")
|
97 |
+
ds = ds.shuffle().select(range(num_samples))
|
|
|
98 |
ds = ds.map(preprocess_fn)
|
99 |
|
100 |
+
examples = [tokenizer(example["text"], padding=False, max_length=max_seq_len, truncation=True) for example in ds]
|
101 |
+
|
102 |
+
quantize_config = BaseQuantizeConfig(
|
103 |
+
bits=4,
|
104 |
+
group_size=128,
|
105 |
+
desc_act=True,
|
106 |
+
model_file_base_name="model",
|
107 |
+
damp_percent=0.1,
|
108 |
)
|
109 |
|
110 |
+
model = AutoGPTQForCausalLM.from_pretrained(
|
111 |
model_id,
|
112 |
+
quantize_config,
|
113 |
device_map="auto",
|
|
|
114 |
)
|
115 |
|
116 |
+
model.quantize(examples)
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
model.save_pretrained("Meta-Llama-3.1-8B-Instruct-quantized.w4a16")
|
118 |
```
|
119 |
|
|
|
121 |
|
122 |
## Evaluation
|
123 |
|
124 |
+
The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande and TruthfulQA.
|
125 |
+
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
126 |
+
This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-8B-Instruct-evals).
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
### Accuracy
|
129 |
|
|
|
133 |
<td><strong>Benchmark</strong>
|
134 |
</td>
|
135 |
<td><strong>Meta-Llama-3.1-8B-Instruct </strong>
|
|
|
|
|
136 |
</td>
|
137 |
<td><strong>Meta-Llama-3.1-8B-Instruct-quantized.w4a16 (this model)</strong>
|
138 |
</td>
|
139 |
+
<td><strong>Recovery</strong>
|
140 |
</td>
|
141 |
</tr>
|
142 |
<tr>
|
143 |
<td>MMLU (5-shot)
|
144 |
</td>
|
145 |
+
<td>69.43
|
|
|
|
|
146 |
</td>
|
147 |
+
<td>67.68
|
148 |
</td>
|
149 |
+
<td>97.5%
|
150 |
</td>
|
151 |
</tr>
|
152 |
<tr>
|
153 |
+
<td>MMLU (CoT, 0-shot)
|
154 |
</td>
|
155 |
+
<td>72.56
|
156 |
</td>
|
157 |
+
<td>70.36
|
158 |
</td>
|
159 |
+
<td>97.0%
|
|
|
|
|
160 |
</td>
|
161 |
</tr>
|
162 |
<tr>
|
163 |
+
<td>ARC Challenge (0-shot)
|
164 |
+
</td>
|
165 |
+
<td>81.57
|
166 |
+
</td>
|
167 |
+
<td>79.95
|
168 |
+
</td>
|
169 |
+
<td>98.0%
|
170 |
</td>
|
171 |
+
</tr>
|
172 |
+
<tr>
|
173 |
+
<td>GSM-8K (CoT, 8-shot, strict-match)
|
174 |
</td>
|
175 |
+
<td>82.79
|
176 |
</td>
|
177 |
+
<td>79.53
|
178 |
</td>
|
179 |
+
<td>96.1%
|
180 |
</td>
|
181 |
</tr>
|
182 |
<tr>
|
|
|
184 |
</td>
|
185 |
<td>80.01
|
186 |
</td>
|
187 |
+
<td>78.57
|
188 |
</td>
|
189 |
+
<td>98.2%
|
|
|
|
|
190 |
</td>
|
191 |
</tr>
|
192 |
<tr>
|
|
|
194 |
</td>
|
195 |
<td>77.90
|
196 |
</td>
|
197 |
+
<td>76.48
|
|
|
|
|
198 |
</td>
|
199 |
+
<td>98.2%
|
200 |
</td>
|
201 |
</tr>
|
202 |
<tr>
|
203 |
+
<td>TruthfulQA (0-shot, mc2)
|
204 |
</td>
|
205 |
<td>54.04
|
206 |
</td>
|
207 |
+
<td>50.46
|
208 |
</td>
|
209 |
+
<td>93.4%
|
|
|
|
|
210 |
</td>
|
211 |
</tr>
|
212 |
<tr>
|
213 |
<td><strong>Average</strong>
|
214 |
</td>
|
215 |
+
<td><strong>74.04</strong>
|
|
|
|
|
216 |
</td>
|
217 |
+
<td><strong>71.86</strong>
|
218 |
</td>
|
219 |
+
<td><strong>97.1%</strong>
|
220 |
</td>
|
221 |
</tr>
|
222 |
+
</table>
|
223 |
+
|
224 |
+
### Reproduction
|
225 |
+
|
226 |
+
The results were obtained using the following commands:
|
227 |
+
|
228 |
+
#### MMLU
|
229 |
+
```
|
230 |
+
lm_eval \
|
231 |
+
--model vllm \
|
232 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a16",dtype=auto,add_bos_token=True,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
|
233 |
+
--tasks mmlu_llama_3.1_instruct \
|
234 |
+
--fewshot_as_multiturn \
|
235 |
+
--apply_chat_template \
|
236 |
+
--num_fewshot 5 \
|
237 |
+
--batch_size auto
|
238 |
+
```
|
239 |
+
|
240 |
+
#### MMLU-CoT
|
241 |
+
```
|
242 |
+
lm_eval \
|
243 |
+
--model vllm \
|
244 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a16",dtype=auto,add_bos_token=True,max_model_len=4064,max_gen_toks=1024,tensor_parallel_size=1 \
|
245 |
+
--tasks mmlu_cot_0shot_llama_3.1_instruct \
|
246 |
+
--apply_chat_template \
|
247 |
+
--num_fewshot 0 \
|
248 |
+
--batch_size auto
|
249 |
+
```
|
250 |
+
|
251 |
+
#### ARC-Challenge
|
252 |
+
```
|
253 |
+
lm_eval \
|
254 |
+
--model vllm \
|
255 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a16",dtype=auto,add_bos_token=True,max_model_len=3940,max_gen_toks=100,tensor_parallel_size=1 \
|
256 |
+
--tasks arc_challenge_llama_3.1_instruct \
|
257 |
+
--apply_chat_template \
|
258 |
+
--num_fewshot 0 \
|
259 |
+
--batch_size auto
|
260 |
+
```
|
261 |
+
|
262 |
+
#### GSM-8K
|
263 |
+
```
|
264 |
+
lm_eval \
|
265 |
+
--model vllm \
|
266 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a16",dtype=auto,add_bos_token=True,max_model_len=4096,max_gen_toks=1024,tensor_parallel_size=1 \
|
267 |
+
--tasks gsm8k_cot_llama_3.1_instruct \
|
268 |
+
--fewshot_as_multiturn \
|
269 |
+
--apply_chat_template \
|
270 |
+
--num_fewshot 8 \
|
271 |
+
--batch_size auto
|
272 |
+
```
|
273 |
+
|
274 |
+
#### Hellaswag
|
275 |
+
```
|
276 |
+
lm_eval \
|
277 |
+
--model vllm \
|
278 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
|
279 |
+
--tasks hellaswag \
|
280 |
+
--num_fewshot 10 \
|
281 |
+
--batch_size auto
|
282 |
+
```
|
283 |
+
|
284 |
+
#### Winogrande
|
285 |
+
```
|
286 |
+
lm_eval \
|
287 |
+
--model vllm \
|
288 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
|
289 |
+
--tasks winogrande \
|
290 |
+
--num_fewshot 5 \
|
291 |
+
--batch_size auto
|
292 |
+
```
|
293 |
+
|
294 |
+
#### TruthfulQA
|
295 |
+
```
|
296 |
+
lm_eval \
|
297 |
+
--model vllm \
|
298 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
|
299 |
+
--tasks truthfulqa \
|
300 |
+
--num_fewshot 0 \
|
301 |
+
--batch_size auto
|
302 |
+
```
|