Update README.md
Browse files
README.md
CHANGED
@@ -7,10 +7,66 @@ tags:
|
|
7 |
# Qwen2-72B-Instruct-FP8
|
8 |
|
9 |
## Model Overview
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
```python
|
16 |
from datasets import load_dataset
|
@@ -21,33 +77,120 @@ from auto_fp8 import AutoFP8ForCausalLM, BaseQuantizeConfig
|
|
21 |
pretrained_model_dir = "Qwen/Qwen2-72B-Instruct"
|
22 |
quantized_model_dir = "Qwen2-72B-Instruct-FP8"
|
23 |
|
24 |
-
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True)
|
25 |
tokenizer.pad_token = tokenizer.eos_token
|
26 |
|
27 |
ds = load_dataset("mgoin/ultrachat_2k", split="train_sft").select(range(512))
|
28 |
examples = [tokenizer.apply_chat_template(batch["messages"], tokenize=False) for batch in ds]
|
29 |
examples = tokenizer(examples, padding=True, truncation=True, return_tensors="pt").to("cuda")
|
30 |
|
31 |
-
quantize_config = BaseQuantizeConfig(
|
|
|
|
|
|
|
|
|
32 |
|
33 |
model = AutoFP8ForCausalLM.from_pretrained(
|
34 |
pretrained_model_dir, quantize_config=quantize_config
|
35 |
)
|
|
|
36 |
model.quantize(examples)
|
37 |
model.save_quantized(quantized_model_dir)
|
38 |
```
|
39 |
|
40 |
## Evaluation
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
| **Recovery** | **100%** | **100.46%** |
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
# Qwen2-72B-Instruct-FP8
|
8 |
|
9 |
## Model Overview
|
10 |
+
- **Model Architecture:** Qwen2
|
11 |
+
- **Input:** Text
|
12 |
+
- **Output:** Text
|
13 |
+
- **Model Optimizations:**
|
14 |
+
- **Weight quantization:** FP8
|
15 |
+
- **Activation quantization:** FP8
|
16 |
+
- **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct), this models is intended for assistant-like chat.
|
17 |
+
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
|
18 |
+
- **Release Date:** 6/8/2024
|
19 |
+
- **Version:** 1.0
|
20 |
+
- **Model Developers:** Neural Magic
|
21 |
|
22 |
+
Quantized version of [Qwen2-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct).
|
23 |
+
It achieves an average score of 80.34 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 79.97.
|
24 |
+
|
25 |
+
### Model Optimizations
|
26 |
+
|
27 |
+
This model was obtained by quantizing the weights and activations of [Qwen2-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct) to FP8 data type, ready for inference with vLLM >= 0.5.0.
|
28 |
+
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
|
29 |
+
|
30 |
+
Only the weights and activations of the linear operators within transformers blocks are quantized. Symmetric per-channel quantization is applied, in which a linear scaling per output dimension maps the FP8 representations of the quantized weights and activations.
|
31 |
+
[AutoFP8](https://github.com/neuralmagic/AutoFP8) is used for quantization with 512 sequences of UltraChat.
|
32 |
+
|
33 |
+
## Deployment
|
34 |
+
|
35 |
+
### Use with vLLM
|
36 |
+
|
37 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
38 |
+
|
39 |
+
```python
|
40 |
+
from vllm import LLM, SamplingParams
|
41 |
+
from transformers import AutoTokenizer
|
42 |
+
|
43 |
+
model_id = "neuralmagic/Qwen2-72B-Instruct-FP8"
|
44 |
+
|
45 |
+
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
|
46 |
+
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
48 |
+
|
49 |
+
messages = [
|
50 |
+
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
51 |
+
{"role": "user", "content": "Who are you?"},
|
52 |
+
]
|
53 |
+
|
54 |
+
prompts = tokenizer.apply_chat_template(messages, tokenize=False)
|
55 |
+
|
56 |
+
llm = LLM(model=model_id)
|
57 |
+
|
58 |
+
outputs = llm.generate(prompts, sampling_params)
|
59 |
+
|
60 |
+
generated_text = outputs[0].outputs[0].text
|
61 |
+
print(generated_text)
|
62 |
+
```
|
63 |
+
|
64 |
+
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
65 |
+
|
66 |
+
## Creation
|
67 |
+
|
68 |
+
This model was created by applying [AutoFP8 with calibration samples from ultrachat](https://github.com/neuralmagic/AutoFP8/blob/147fa4d9e1a90ef8a93f96fc7d9c33056ddc017a/example_dataset.py), as presented in the code snipet below.
|
69 |
+
Although AutoFP8 was used for this particular model, Neural Magic is transitioning to using [llm-compressor](https://github.com/vllm-project/llm-compressor) which supports several quantization schemes and models not supported by AutoFP8.
|
70 |
|
71 |
```python
|
72 |
from datasets import load_dataset
|
|
|
77 |
pretrained_model_dir = "Qwen/Qwen2-72B-Instruct"
|
78 |
quantized_model_dir = "Qwen2-72B-Instruct-FP8"
|
79 |
|
80 |
+
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True, model_max_length=4096)
|
81 |
tokenizer.pad_token = tokenizer.eos_token
|
82 |
|
83 |
ds = load_dataset("mgoin/ultrachat_2k", split="train_sft").select(range(512))
|
84 |
examples = [tokenizer.apply_chat_template(batch["messages"], tokenize=False) for batch in ds]
|
85 |
examples = tokenizer(examples, padding=True, truncation=True, return_tensors="pt").to("cuda")
|
86 |
|
87 |
+
quantize_config = BaseQuantizeConfig(
|
88 |
+
quant_method="fp8",
|
89 |
+
activation_scheme="static"
|
90 |
+
ignore_patterns=["re:.*lm_head"],
|
91 |
+
)
|
92 |
|
93 |
model = AutoFP8ForCausalLM.from_pretrained(
|
94 |
pretrained_model_dir, quantize_config=quantize_config
|
95 |
)
|
96 |
+
|
97 |
model.quantize(examples)
|
98 |
model.save_quantized(quantized_model_dir)
|
99 |
```
|
100 |
|
101 |
## Evaluation
|
102 |
|
103 |
+
The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command:
|
104 |
+
```
|
105 |
+
lm_eval \
|
106 |
+
--model vllm \
|
107 |
+
--model_args pretrained="neuralmagic/Qwen2-72B-Instruct-FP8",dtype=auto,gpu_memory_utilization=0.4,add_bos_token=True,max_model_len=4096 \
|
108 |
+
--tasks openllm \
|
109 |
+
--batch_size auto
|
110 |
+
```
|
111 |
+
|
112 |
+
### Accuracy
|
|
|
113 |
|
114 |
+
#### Open LLM Leaderboard evaluation scores
|
115 |
+
<table>
|
116 |
+
<tr>
|
117 |
+
<td><strong>Benchmark</strong>
|
118 |
+
</td>
|
119 |
+
<td><strong>Qwen2-72B-Instruct</strong>
|
120 |
+
</td>
|
121 |
+
<td><strong>Qwen2-72B-Instruct-FP8(this model)</strong>
|
122 |
+
</td>
|
123 |
+
<td><strong>Recovery</strong>
|
124 |
+
</td>
|
125 |
+
</tr>
|
126 |
+
<tr>
|
127 |
+
<td>MMLU (5-shot)
|
128 |
+
</td>
|
129 |
+
<td>83.97
|
130 |
+
</td>
|
131 |
+
<td>84.06
|
132 |
+
</td>
|
133 |
+
<td>100.1%
|
134 |
+
</td>
|
135 |
+
</tr>
|
136 |
+
<tr>
|
137 |
+
<td>ARC Challenge (25-shot)
|
138 |
+
</td>
|
139 |
+
<td>71.58
|
140 |
+
</td>
|
141 |
+
<td>72.09
|
142 |
+
</td>
|
143 |
+
<td>100.7%
|
144 |
+
</td>
|
145 |
+
</tr>
|
146 |
+
<tr>
|
147 |
+
<td>GSM-8K (5-shot, strict-match)
|
148 |
+
</td>
|
149 |
+
<td>87.56
|
150 |
+
</td>
|
151 |
+
<td>88.93
|
152 |
+
</td>
|
153 |
+
<td>101.5%
|
154 |
+
</td>
|
155 |
+
</tr>
|
156 |
+
<tr>
|
157 |
+
<td>Hellaswag (10-shot)
|
158 |
+
</td>
|
159 |
+
<td>86.94
|
160 |
+
</td>
|
161 |
+
<td>86.83
|
162 |
+
</td>
|
163 |
+
<td>99.87%
|
164 |
+
</td>
|
165 |
+
</tr>
|
166 |
+
<tr>
|
167 |
+
<td>Winogrande (5-shot)
|
168 |
+
</td>
|
169 |
+
<td>82.79
|
170 |
+
</td>
|
171 |
+
<td>83.18
|
172 |
+
</td>
|
173 |
+
<td>100.4%
|
174 |
+
</td>
|
175 |
+
</tr>
|
176 |
+
<tr>
|
177 |
+
<td>TruthfulQA (0-shot)
|
178 |
+
</td>
|
179 |
+
<td>66.98
|
180 |
+
</td>
|
181 |
+
<td>66.95
|
182 |
+
</td>
|
183 |
+
<td>99.95%
|
184 |
+
</td>
|
185 |
+
</tr>
|
186 |
+
<tr>
|
187 |
+
<td><strong>Average</strong>
|
188 |
+
</td>
|
189 |
+
<td><strong>79.97</strong>
|
190 |
+
</td>
|
191 |
+
<td><strong>80.34</strong>
|
192 |
+
</td>
|
193 |
+
<td><strong>100.4%</strong>
|
194 |
+
</td>
|
195 |
+
</tr>
|
196 |
+
</table>
|