File size: 3,385 Bytes
6ae44ff
 
 
 
 
 
 
 
 
 
 
 
51e53c5
 
6ae44ff
 
51e53c5
6ae44ff
 
 
 
 
 
 
 
 
 
 
 
ecf28fe
6ae44ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfee1b2
6ae44ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
base_model: upstage/SOLAR-10.7B-Instruct-v1.0
inference: false
model_type: llama
prompt_template: |
  ### User:\n
  {prompt}
  ### Assistant:\n
quantized_by: mwitiderrick
tags:
- deepsparse
---
# SOLAR-10.7B-Instruct-v1.0 - DeepSparse
This repo contains model files for [SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0) optimized for [DeepSparse](https://github.com/neuralmagic/deepsparse), a CPU inference runtime for sparse models.

This model was quantized and pruned with [SparseGPT](https://arxiv.org/abs/2301.00774), using [SparseML](https://github.com/neuralmagic/sparseml).

## Inference
Install [DeepSparse LLM](https://github.com/neuralmagic/deepsparse) for fast inference on CPUs: 
```bash
pip install deepsparse-nightly[llm]
```
Run in a [Python pipeline](https://github.com/neuralmagic/deepsparse/blob/main/docs/llms/text-generation-pipeline.md):
```python
from deepsparse import TextGeneration

prompt = "How to make banana bread?"
formatted_prompt =  f"### User:\n{prompt}\n\n### Assistant:\n"

model = TextGeneration(model_path="hf:neuralmagic/SOLAR-10.7B-Instruct-v1.0-pruned50-quant-ds")

print(model(formatted_prompt, max_new_tokens=200).generations[0].text)
"""
To make banana bread, follow these steps:

1. Gather ingredients:
- 4 ripe bananas
- 1 cup of flour (all-purpose)
- 1 teaspoon baking soda
- 1/2 cup of softened butter
- 1/2 cup of sugar
- 1/2 teaspoon salt
- 1 teaspoon vanilla extract
- 1/2 cup of milk

2. Preheat your oven: Preheat your oven to 350°F (177°C).

3. Prepare a loaf pan: Grease a loaf pan with butter or use a non-stick baking pan.

4. Mash the bananas: Peel the bananas and mash them in a bowl.

5. Mix the dry ingredients: In a separate bowl, mix the flour, baking soda, and salt.
"""
```

## Prompt template
```

  ### User:\n
  {prompt}
  ### Assistant:\n
```
## Sparsification
For details on how this model was sparsified, see the `recipe.yaml` in this repo and follow the instructions below.

```bash
git clone https://github.com/neuralmagic/sparseml
pip install -e "sparseml[transformers]"
python sparseml/src/sparseml/transformers/sparsification/obcq/obcq.py upstage/SOLAR-10.7B-Instruct-v1.0 open_platypus --recipe recipe.yaml --save True
python sparseml/src/sparseml/transformers/sparsification/obcq/export.py --task text-generation --model_path obcq_deployment 
cp deployment/model.onnx deployment/model-orig.onnx
```
Run this kv-cache injection to speed up the model at inference by caching the Key and Value states:
```python
import os
import onnx
from sparseml.exporters.kv_cache_injector import KeyValueCacheInjector
input_file = "deployment/model-orig.onnx"
output_file = "deployment/model.onnx"
model = onnx.load(input_file, load_external_data=False)
model = KeyValueCacheInjector(model_path=os.path.dirname(input_file)).apply(model)
onnx.save(model, output_file)
print(f"Modified model saved to: {output_file}")
```
Follow the instructions on our [One Shot With SparseML](https://github.com/neuralmagic/sparseml/tree/main/src/sparseml/transformers/sparsification/obcq) page for a step-by-step guide for performing one-shot quantization of large language models. 
## Slack

For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)