zeroshot's picture
Update README.md
4800c91
metadata
tags:
  - mteb
  - sparse sparsity quantized onnx embeddings int8
model-index:
  - name: bge-small-en-v1.5-sparse
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 70.71641791044776
          - type: ap
            value: 32.850850647310004
          - type: f1
            value: 64.48101916414805
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 83.33962500000001
          - type: ap
            value: 78.28706349240106
          - type: f1
            value: 83.27426715603062
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 40.988
          - type: f1
            value: 40.776679545648506
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 26.101999999999997
          - type: map_at_10
            value: 40.754000000000005
          - type: map_at_100
            value: 41.83
          - type: map_at_1000
            value: 41.845
          - type: map_at_3
            value: 36.178
          - type: map_at_5
            value: 38.646
          - type: mrr_at_1
            value: 26.6
          - type: mrr_at_10
            value: 40.934
          - type: mrr_at_100
            value: 42.015
          - type: mrr_at_1000
            value: 42.03
          - type: mrr_at_3
            value: 36.344
          - type: mrr_at_5
            value: 38.848
          - type: ndcg_at_1
            value: 26.101999999999997
          - type: ndcg_at_10
            value: 49.126999999999995
          - type: ndcg_at_100
            value: 53.815999999999995
          - type: ndcg_at_1000
            value: 54.178000000000004
          - type: ndcg_at_3
            value: 39.607
          - type: ndcg_at_5
            value: 44.086999999999996
          - type: precision_at_1
            value: 26.101999999999997
          - type: precision_at_10
            value: 7.596
          - type: precision_at_100
            value: 0.967
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 16.524
          - type: precision_at_5
            value: 12.105
          - type: recall_at_1
            value: 26.101999999999997
          - type: recall_at_10
            value: 75.96000000000001
          - type: recall_at_100
            value: 96.65700000000001
          - type: recall_at_1000
            value: 99.431
          - type: recall_at_3
            value: 49.573
          - type: recall_at_5
            value: 60.526
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 43.10651535441929
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 34.41095293826606
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 56.96575970919239
          - type: mrr
            value: 69.92503187794047
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 79.64892774481326
          - type: cos_sim_spearman
            value: 78.953003817029
          - type: euclidean_pearson
            value: 78.92456838230683
          - type: euclidean_spearman
            value: 78.56504316985354
          - type: manhattan_pearson
            value: 79.21436359014227
          - type: manhattan_spearman
            value: 78.66263575501259
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 81.25
          - type: f1
            value: 81.20841448916138
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 34.69545244587236
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 28.84301739171936
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 23.401
          - type: map_at_10
            value: 32.451
          - type: map_at_100
            value: 33.891
          - type: map_at_1000
            value: 34.01
          - type: map_at_3
            value: 29.365999999999996
          - type: map_at_5
            value: 31.240000000000002
          - type: mrr_at_1
            value: 29.9
          - type: mrr_at_10
            value: 38.590999999999994
          - type: mrr_at_100
            value: 39.587
          - type: mrr_at_1000
            value: 39.637
          - type: mrr_at_3
            value: 36.028
          - type: mrr_at_5
            value: 37.673
          - type: ndcg_at_1
            value: 29.9
          - type: ndcg_at_10
            value: 38.251000000000005
          - type: ndcg_at_100
            value: 44.354
          - type: ndcg_at_1000
            value: 46.642
          - type: ndcg_at_3
            value: 33.581
          - type: ndcg_at_5
            value: 35.96
          - type: precision_at_1
            value: 29.9
          - type: precision_at_10
            value: 7.439
          - type: precision_at_100
            value: 1.28
          - type: precision_at_1000
            value: 0.17700000000000002
          - type: precision_at_3
            value: 16.404
          - type: precision_at_5
            value: 12.046
          - type: recall_at_1
            value: 23.401
          - type: recall_at_10
            value: 49.305
          - type: recall_at_100
            value: 75.885
          - type: recall_at_1000
            value: 90.885
          - type: recall_at_3
            value: 35.341
          - type: recall_at_5
            value: 42.275
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 22.103
          - type: map_at_10
            value: 29.271
          - type: map_at_100
            value: 30.151
          - type: map_at_1000
            value: 30.276999999999997
          - type: map_at_3
            value: 27.289
          - type: map_at_5
            value: 28.236
          - type: mrr_at_1
            value: 26.943
          - type: mrr_at_10
            value: 33.782000000000004
          - type: mrr_at_100
            value: 34.459
          - type: mrr_at_1000
            value: 34.525
          - type: mrr_at_3
            value: 31.985000000000003
          - type: mrr_at_5
            value: 32.909
          - type: ndcg_at_1
            value: 26.943
          - type: ndcg_at_10
            value: 33.616
          - type: ndcg_at_100
            value: 37.669000000000004
          - type: ndcg_at_1000
            value: 40.247
          - type: ndcg_at_3
            value: 30.482
          - type: ndcg_at_5
            value: 31.615
          - type: precision_at_1
            value: 26.943
          - type: precision_at_10
            value: 6.146
          - type: precision_at_100
            value: 1.038
          - type: precision_at_1000
            value: 0.151
          - type: precision_at_3
            value: 14.521999999999998
          - type: precision_at_5
            value: 10.038
          - type: recall_at_1
            value: 22.103
          - type: recall_at_10
            value: 41.754999999999995
          - type: recall_at_100
            value: 59.636
          - type: recall_at_1000
            value: 76.801
          - type: recall_at_3
            value: 32.285000000000004
          - type: recall_at_5
            value: 35.684
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 32.565
          - type: map_at_10
            value: 43.07
          - type: map_at_100
            value: 44.102999999999994
          - type: map_at_1000
            value: 44.175
          - type: map_at_3
            value: 40.245
          - type: map_at_5
            value: 41.71
          - type: mrr_at_1
            value: 37.429
          - type: mrr_at_10
            value: 46.358
          - type: mrr_at_100
            value: 47.146
          - type: mrr_at_1000
            value: 47.187
          - type: mrr_at_3
            value: 44.086
          - type: mrr_at_5
            value: 45.318000000000005
          - type: ndcg_at_1
            value: 37.429
          - type: ndcg_at_10
            value: 48.398
          - type: ndcg_at_100
            value: 52.90899999999999
          - type: ndcg_at_1000
            value: 54.478
          - type: ndcg_at_3
            value: 43.418
          - type: ndcg_at_5
            value: 45.578
          - type: precision_at_1
            value: 37.429
          - type: precision_at_10
            value: 7.856000000000001
          - type: precision_at_100
            value: 1.093
          - type: precision_at_1000
            value: 0.129
          - type: precision_at_3
            value: 19.331
          - type: precision_at_5
            value: 13.191
          - type: recall_at_1
            value: 32.565
          - type: recall_at_10
            value: 61.021
          - type: recall_at_100
            value: 81.105
          - type: recall_at_1000
            value: 92.251
          - type: recall_at_3
            value: 47.637
          - type: recall_at_5
            value: 52.871
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 18.108
          - type: map_at_10
            value: 24.613
          - type: map_at_100
            value: 25.624000000000002
          - type: map_at_1000
            value: 25.721
          - type: map_at_3
            value: 22.271
          - type: map_at_5
            value: 23.681
          - type: mrr_at_1
            value: 19.435
          - type: mrr_at_10
            value: 26.124000000000002
          - type: mrr_at_100
            value: 27.07
          - type: mrr_at_1000
            value: 27.145999999999997
          - type: mrr_at_3
            value: 23.748
          - type: mrr_at_5
            value: 25.239
          - type: ndcg_at_1
            value: 19.435
          - type: ndcg_at_10
            value: 28.632
          - type: ndcg_at_100
            value: 33.988
          - type: ndcg_at_1000
            value: 36.551
          - type: ndcg_at_3
            value: 24.035999999999998
          - type: ndcg_at_5
            value: 26.525
          - type: precision_at_1
            value: 19.435
          - type: precision_at_10
            value: 4.565
          - type: precision_at_100
            value: 0.771
          - type: precision_at_1000
            value: 0.10200000000000001
          - type: precision_at_3
            value: 10.169
          - type: precision_at_5
            value: 7.571
          - type: recall_at_1
            value: 18.108
          - type: recall_at_10
            value: 39.533
          - type: recall_at_100
            value: 64.854
          - type: recall_at_1000
            value: 84.421
          - type: recall_at_3
            value: 27.500000000000004
          - type: recall_at_5
            value: 33.314
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 11.087
          - type: map_at_10
            value: 17.323
          - type: map_at_100
            value: 18.569
          - type: map_at_1000
            value: 18.694
          - type: map_at_3
            value: 15.370000000000001
          - type: map_at_5
            value: 16.538
          - type: mrr_at_1
            value: 13.557
          - type: mrr_at_10
            value: 21.041
          - type: mrr_at_100
            value: 22.134
          - type: mrr_at_1000
            value: 22.207
          - type: mrr_at_3
            value: 18.843
          - type: mrr_at_5
            value: 20.236
          - type: ndcg_at_1
            value: 13.557
          - type: ndcg_at_10
            value: 21.571
          - type: ndcg_at_100
            value: 27.678000000000004
          - type: ndcg_at_1000
            value: 30.8
          - type: ndcg_at_3
            value: 17.922
          - type: ndcg_at_5
            value: 19.826
          - type: precision_at_1
            value: 13.557
          - type: precision_at_10
            value: 4.1290000000000004
          - type: precision_at_100
            value: 0.8370000000000001
          - type: precision_at_1000
            value: 0.125
          - type: precision_at_3
            value: 8.914
          - type: precision_at_5
            value: 6.691999999999999
          - type: recall_at_1
            value: 11.087
          - type: recall_at_10
            value: 30.94
          - type: recall_at_100
            value: 57.833999999999996
          - type: recall_at_1000
            value: 80.365
          - type: recall_at_3
            value: 20.854
          - type: recall_at_5
            value: 25.695
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 21.708
          - type: map_at_10
            value: 30.422
          - type: map_at_100
            value: 31.713
          - type: map_at_1000
            value: 31.842
          - type: map_at_3
            value: 27.424
          - type: map_at_5
            value: 29.17
          - type: mrr_at_1
            value: 26.756
          - type: mrr_at_10
            value: 35.304
          - type: mrr_at_100
            value: 36.296
          - type: mrr_at_1000
            value: 36.359
          - type: mrr_at_3
            value: 32.692
          - type: mrr_at_5
            value: 34.288999999999994
          - type: ndcg_at_1
            value: 26.756
          - type: ndcg_at_10
            value: 35.876000000000005
          - type: ndcg_at_100
            value: 41.708
          - type: ndcg_at_1000
            value: 44.359
          - type: ndcg_at_3
            value: 30.946
          - type: ndcg_at_5
            value: 33.404
          - type: precision_at_1
            value: 26.756
          - type: precision_at_10
            value: 6.795
          - type: precision_at_100
            value: 1.138
          - type: precision_at_1000
            value: 0.155
          - type: precision_at_3
            value: 15.046999999999999
          - type: precision_at_5
            value: 10.972
          - type: recall_at_1
            value: 21.708
          - type: recall_at_10
            value: 47.315000000000005
          - type: recall_at_100
            value: 72.313
          - type: recall_at_1000
            value: 90.199
          - type: recall_at_3
            value: 33.528999999999996
          - type: recall_at_5
            value: 39.985
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 18.902
          - type: map_at_10
            value: 26.166
          - type: map_at_100
            value: 27.368
          - type: map_at_1000
            value: 27.493000000000002
          - type: map_at_3
            value: 23.505000000000003
          - type: map_at_5
            value: 25.019000000000002
          - type: mrr_at_1
            value: 23.402
          - type: mrr_at_10
            value: 30.787
          - type: mrr_at_100
            value: 31.735000000000003
          - type: mrr_at_1000
            value: 31.806
          - type: mrr_at_3
            value: 28.33
          - type: mrr_at_5
            value: 29.711
          - type: ndcg_at_1
            value: 23.402
          - type: ndcg_at_10
            value: 30.971
          - type: ndcg_at_100
            value: 36.61
          - type: ndcg_at_1000
            value: 39.507999999999996
          - type: ndcg_at_3
            value: 26.352999999999998
          - type: ndcg_at_5
            value: 28.488000000000003
          - type: precision_at_1
            value: 23.402
          - type: precision_at_10
            value: 5.799
          - type: precision_at_100
            value: 1
          - type: precision_at_1000
            value: 0.14100000000000001
          - type: precision_at_3
            value: 12.633
          - type: precision_at_5
            value: 9.269
          - type: recall_at_1
            value: 18.902
          - type: recall_at_10
            value: 40.929
          - type: recall_at_100
            value: 65.594
          - type: recall_at_1000
            value: 85.961
          - type: recall_at_3
            value: 28.121000000000002
          - type: recall_at_5
            value: 33.638
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 19.168
          - type: map_at_10
            value: 25.142999999999997
          - type: map_at_100
            value: 25.993
          - type: map_at_1000
            value: 26.076
          - type: map_at_3
            value: 23.179
          - type: map_at_5
            value: 24.322
          - type: mrr_at_1
            value: 21.933
          - type: mrr_at_10
            value: 27.72
          - type: mrr_at_100
            value: 28.518
          - type: mrr_at_1000
            value: 28.582
          - type: mrr_at_3
            value: 25.791999999999998
          - type: mrr_at_5
            value: 26.958
          - type: ndcg_at_1
            value: 21.933
          - type: ndcg_at_10
            value: 28.866999999999997
          - type: ndcg_at_100
            value: 33.285
          - type: ndcg_at_1000
            value: 35.591
          - type: ndcg_at_3
            value: 25.202999999999996
          - type: ndcg_at_5
            value: 27.045
          - type: precision_at_1
            value: 21.933
          - type: precision_at_10
            value: 4.632
          - type: precision_at_100
            value: 0.733
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_3
            value: 10.992
          - type: precision_at_5
            value: 7.853000000000001
          - type: recall_at_1
            value: 19.168
          - type: recall_at_10
            value: 37.899
          - type: recall_at_100
            value: 58.54899999999999
          - type: recall_at_1000
            value: 75.666
          - type: recall_at_3
            value: 27.831
          - type: recall_at_5
            value: 32.336
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 12.764000000000001
          - type: map_at_10
            value: 17.757
          - type: map_at_100
            value: 18.677
          - type: map_at_1000
            value: 18.813
          - type: map_at_3
            value: 16.151
          - type: map_at_5
            value: 16.946
          - type: mrr_at_1
            value: 15.726
          - type: mrr_at_10
            value: 21.019
          - type: mrr_at_100
            value: 21.856
          - type: mrr_at_1000
            value: 21.954
          - type: mrr_at_3
            value: 19.282
          - type: mrr_at_5
            value: 20.189
          - type: ndcg_at_1
            value: 15.726
          - type: ndcg_at_10
            value: 21.259
          - type: ndcg_at_100
            value: 25.868999999999996
          - type: ndcg_at_1000
            value: 29.425
          - type: ndcg_at_3
            value: 18.204
          - type: ndcg_at_5
            value: 19.434
          - type: precision_at_1
            value: 15.726
          - type: precision_at_10
            value: 3.8920000000000003
          - type: precision_at_100
            value: 0.741
          - type: precision_at_1000
            value: 0.121
          - type: precision_at_3
            value: 8.58
          - type: precision_at_5
            value: 6.132
          - type: recall_at_1
            value: 12.764000000000001
          - type: recall_at_10
            value: 28.639
          - type: recall_at_100
            value: 49.639
          - type: recall_at_1000
            value: 75.725
          - type: recall_at_3
            value: 19.883
          - type: recall_at_5
            value: 23.141000000000002
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 18.98
          - type: map_at_10
            value: 25.2
          - type: map_at_100
            value: 26.279000000000003
          - type: map_at_1000
            value: 26.399
          - type: map_at_3
            value: 23.399
          - type: map_at_5
            value: 24.284
          - type: mrr_at_1
            value: 22.015
          - type: mrr_at_10
            value: 28.555000000000003
          - type: mrr_at_100
            value: 29.497
          - type: mrr_at_1000
            value: 29.574
          - type: mrr_at_3
            value: 26.788
          - type: mrr_at_5
            value: 27.576
          - type: ndcg_at_1
            value: 22.015
          - type: ndcg_at_10
            value: 29.266
          - type: ndcg_at_100
            value: 34.721000000000004
          - type: ndcg_at_1000
            value: 37.659
          - type: ndcg_at_3
            value: 25.741000000000003
          - type: ndcg_at_5
            value: 27.044
          - type: precision_at_1
            value: 22.015
          - type: precision_at_10
            value: 4.897
          - type: precision_at_100
            value: 0.8540000000000001
          - type: precision_at_1000
            value: 0.122
          - type: precision_at_3
            value: 11.567
          - type: precision_at_5
            value: 7.9479999999999995
          - type: recall_at_1
            value: 18.98
          - type: recall_at_10
            value: 38.411
          - type: recall_at_100
            value: 63.164
          - type: recall_at_1000
            value: 84.292
          - type: recall_at_3
            value: 28.576
          - type: recall_at_5
            value: 31.789
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 20.372
          - type: map_at_10
            value: 27.161
          - type: map_at_100
            value: 28.364
          - type: map_at_1000
            value: 28.554000000000002
          - type: map_at_3
            value: 25.135
          - type: map_at_5
            value: 26.200000000000003
          - type: mrr_at_1
            value: 24.704
          - type: mrr_at_10
            value: 31.219
          - type: mrr_at_100
            value: 32.092
          - type: mrr_at_1000
            value: 32.181
          - type: mrr_at_3
            value: 29.282000000000004
          - type: mrr_at_5
            value: 30.359
          - type: ndcg_at_1
            value: 24.704
          - type: ndcg_at_10
            value: 31.622
          - type: ndcg_at_100
            value: 36.917
          - type: ndcg_at_1000
            value: 40.357
          - type: ndcg_at_3
            value: 28.398
          - type: ndcg_at_5
            value: 29.764000000000003
          - type: precision_at_1
            value: 24.704
          - type: precision_at_10
            value: 5.81
          - type: precision_at_100
            value: 1.208
          - type: precision_at_1000
            value: 0.209
          - type: precision_at_3
            value: 13.241
          - type: precision_at_5
            value: 9.407
          - type: recall_at_1
            value: 20.372
          - type: recall_at_10
            value: 40.053
          - type: recall_at_100
            value: 64.71000000000001
          - type: recall_at_1000
            value: 87.607
          - type: recall_at_3
            value: 29.961
          - type: recall_at_5
            value: 34.058
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 14.424000000000001
          - type: map_at_10
            value: 20.541999999999998
          - type: map_at_100
            value: 21.495
          - type: map_at_1000
            value: 21.604
          - type: map_at_3
            value: 18.608
          - type: map_at_5
            value: 19.783
          - type: mrr_at_1
            value: 15.895999999999999
          - type: mrr_at_10
            value: 22.484
          - type: mrr_at_100
            value: 23.376
          - type: mrr_at_1000
            value: 23.467
          - type: mrr_at_3
            value: 20.548
          - type: mrr_at_5
            value: 21.731
          - type: ndcg_at_1
            value: 15.895999999999999
          - type: ndcg_at_10
            value: 24.343
          - type: ndcg_at_100
            value: 29.181
          - type: ndcg_at_1000
            value: 32.330999999999996
          - type: ndcg_at_3
            value: 20.518
          - type: ndcg_at_5
            value: 22.561999999999998
          - type: precision_at_1
            value: 15.895999999999999
          - type: precision_at_10
            value: 3.9739999999999998
          - type: precision_at_100
            value: 0.6799999999999999
          - type: precision_at_1000
            value: 0.105
          - type: precision_at_3
            value: 9.057
          - type: precision_at_5
            value: 6.654
          - type: recall_at_1
            value: 14.424000000000001
          - type: recall_at_10
            value: 34.079
          - type: recall_at_100
            value: 56.728
          - type: recall_at_1000
            value: 80.765
          - type: recall_at_3
            value: 23.993000000000002
          - type: recall_at_5
            value: 28.838
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 41.665
          - type: f1
            value: 37.601137843331244
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 74.8052
          - type: ap
            value: 68.92588517572685
          - type: f1
            value: 74.66801685854456
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 91.2220702234382
          - type: f1
            value: 90.81687856852439
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 69.39124487004105
          - type: f1
            value: 51.8350043424968
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 69.80497646267652
          - type: f1
            value: 67.34213899244814
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 74.54270342972428
          - type: f1
            value: 74.02802500235784
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 30.488580544269002
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 28.80426879476371
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 31.37970068676043
          - type: mrr
            value: 32.48523694064166
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 42.862710845031565
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 54.270000736385626
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 80.89215288990194
          - type: cos_sim_spearman
            value: 74.386413188675
          - type: euclidean_pearson
            value: 78.83679563989534
          - type: euclidean_spearman
            value: 74.29328198771996
          - type: manhattan_pearson
            value: 78.77968796707641
          - type: manhattan_spearman
            value: 74.20887429784696
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 78.31858821914498
          - type: cos_sim_spearman
            value: 72.2217008523832
          - type: euclidean_pearson
            value: 75.38901061978429
          - type: euclidean_spearman
            value: 71.81255767675184
          - type: manhattan_pearson
            value: 75.49472202181288
          - type: manhattan_spearman
            value: 71.96322588726144
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 79.48334648997455
          - type: cos_sim_spearman
            value: 80.99654029572798
          - type: euclidean_pearson
            value: 80.46546523970035
          - type: euclidean_spearman
            value: 80.90646216980744
          - type: manhattan_pearson
            value: 80.35474057857608
          - type: manhattan_spearman
            value: 80.8141299909659
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 79.73826970784727
          - type: cos_sim_spearman
            value: 76.9926870133034
          - type: euclidean_pearson
            value: 79.6386542120984
          - type: euclidean_spearman
            value: 77.05041986942253
          - type: manhattan_pearson
            value: 79.61799508502459
          - type: manhattan_spearman
            value: 77.07169617647067
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 83.93999019426069
          - type: cos_sim_spearman
            value: 85.21166521594695
          - type: euclidean_pearson
            value: 84.97207676326357
          - type: euclidean_spearman
            value: 85.40726578482739
          - type: manhattan_pearson
            value: 85.0386693192183
          - type: manhattan_spearman
            value: 85.49230945586409
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 80.8133974034008
          - type: cos_sim_spearman
            value: 82.82919022688844
          - type: euclidean_pearson
            value: 81.92587923760179
          - type: euclidean_spearman
            value: 82.86629450518863
          - type: manhattan_pearson
            value: 81.98232365999253
          - type: manhattan_spearman
            value: 82.94313939920296
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 86.12872422642363
          - type: cos_sim_spearman
            value: 87.77672179979807
          - type: euclidean_pearson
            value: 87.76172961705947
          - type: euclidean_spearman
            value: 87.9891393339215
          - type: manhattan_pearson
            value: 87.78863663568221
          - type: manhattan_spearman
            value: 88.08297053203866
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 58.82824030232733
          - type: cos_sim_spearman
            value: 64.17079382633538
          - type: euclidean_pearson
            value: 61.31505225602925
          - type: euclidean_spearman
            value: 64.05080034530694
          - type: manhattan_pearson
            value: 61.77095758943306
          - type: manhattan_spearman
            value: 64.14475973774933
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 81.39239803497064
          - type: cos_sim_spearman
            value: 81.76637354520439
          - type: euclidean_pearson
            value: 82.98008209033587
          - type: euclidean_spearman
            value: 82.18662536188657
          - type: manhattan_pearson
            value: 82.9630328314908
          - type: manhattan_spearman
            value: 82.13726553603003
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 79.45753132898741
          - type: mrr
            value: 93.84029822755313
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.8019801980198
          - type: cos_sim_ap
            value: 94.58629018512772
          - type: cos_sim_f1
            value: 89.84771573604061
          - type: cos_sim_precision
            value: 91.23711340206185
          - type: cos_sim_recall
            value: 88.5
          - type: dot_accuracy
            value: 99.74950495049505
          - type: dot_ap
            value: 92.5761214576951
          - type: dot_f1
            value: 87.09841917389087
          - type: dot_precision
            value: 88.86576482830385
          - type: dot_recall
            value: 85.39999999999999
          - type: euclidean_accuracy
            value: 99.80495049504951
          - type: euclidean_ap
            value: 94.56231673602272
          - type: euclidean_f1
            value: 90.02531645569621
          - type: euclidean_precision
            value: 91.17948717948718
          - type: euclidean_recall
            value: 88.9
          - type: manhattan_accuracy
            value: 99.8009900990099
          - type: manhattan_ap
            value: 94.5775591647447
          - type: manhattan_f1
            value: 89.86384266263238
          - type: manhattan_precision
            value: 90.64089521871821
          - type: manhattan_recall
            value: 89.1
          - type: max_accuracy
            value: 99.80495049504951
          - type: max_ap
            value: 94.58629018512772
          - type: max_f1
            value: 90.02531645569621
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 53.088941385715735
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 33.146129414825744
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 48.7511362739003
          - type: mrr
            value: 49.61682210763093
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 67.43820000000001
          - type: ap
            value: 12.899489312331003
          - type: f1
            value: 52.03468121072981
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 57.475947934352
          - type: f1
            value: 57.77676730676238
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 38.3463456299738
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 83.94230196101806
          - type: cos_sim_ap
            value: 67.00916556336148
          - type: cos_sim_f1
            value: 63.046014257939085
          - type: cos_sim_precision
            value: 61.961783439490446
          - type: cos_sim_recall
            value: 64.16886543535621
          - type: dot_accuracy
            value: 83.18531322644095
          - type: dot_ap
            value: 63.112896030267066
          - type: dot_f1
            value: 59.06565656565657
          - type: dot_precision
            value: 56.63438256658596
          - type: dot_recall
            value: 61.715039577836414
          - type: euclidean_accuracy
            value: 83.94230196101806
          - type: euclidean_ap
            value: 67.19856676674463
          - type: euclidean_f1
            value: 63.08428413691571
          - type: euclidean_precision
            value: 58.9543682641596
          - type: euclidean_recall
            value: 67.83641160949868
          - type: manhattan_accuracy
            value: 83.91845979614949
          - type: manhattan_ap
            value: 66.9845327263072
          - type: manhattan_f1
            value: 62.693323274236135
          - type: manhattan_precision
            value: 59.884698534710544
          - type: manhattan_recall
            value: 65.77836411609499
          - type: max_accuracy
            value: 83.94230196101806
          - type: max_ap
            value: 67.19856676674463
          - type: max_f1
            value: 63.08428413691571
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 88.0777738968448
          - type: cos_sim_ap
            value: 84.19747786536
          - type: cos_sim_f1
            value: 75.91830995817077
          - type: cos_sim_precision
            value: 69.84671107949033
          - type: cos_sim_recall
            value: 83.14598090545118
          - type: dot_accuracy
            value: 87.14246904955951
          - type: dot_ap
            value: 82.37528804640529
          - type: dot_f1
            value: 74.40963166732163
          - type: dot_precision
            value: 69.4127841098447
          - type: dot_recall
            value: 80.18170619032954
          - type: euclidean_accuracy
            value: 88.08359529630924
          - type: euclidean_ap
            value: 84.22633217661986
          - type: euclidean_f1
            value: 76.09190339866403
          - type: euclidean_precision
            value: 72.70304390517605
          - type: euclidean_recall
            value: 79.81213427779488
          - type: manhattan_accuracy
            value: 88.08359529630924
          - type: manhattan_ap
            value: 84.18362004611083
          - type: manhattan_f1
            value: 76.08789625360231
          - type: manhattan_precision
            value: 71.49336582724072
          - type: manhattan_recall
            value: 81.3135201724669
          - type: max_accuracy
            value: 88.08359529630924
          - type: max_ap
            value: 84.22633217661986
          - type: max_f1
            value: 76.09190339866403
license: mit
language:
  - en

bge-small-en-v1.5-sparse

Usage

This is the sparse ONNX variant of the bge-small-en-v1.5 embeddings model accelerated with Sparsify for quantization/pruning and DeepSparseSentenceTransformers for inference.

pip install -U deepsparse-nightly[sentence_transformers]
from deepsparse.sentence_transformers import DeepSparseSentenceTransformer
model = DeepSparseSentenceTransformer('neuralmagic/bge-small-en-v1.5-sparse', export=False)

# Our sentences we like to encode
sentences = ['This framework generates embeddings for each input sentence',
    'Sentences are passed as a list of string.',
    'The quick brown fox jumps over the lazy dog.']

# Sentences are encoded by calling model.encode()
embeddings = model.encode(sentences)

# Print the embeddings
for sentence, embedding in zip(sentences, embeddings):
    print("Sentence:", sentence)
    print("Embedding:", embedding.shape)
    print("")

For general questions on these models and sparsification methods, reach out to the engineering team on our community Slack.