File size: 1,251 Bytes
8c7fd89 76e9580 77cbfbd 76e9580 77cbfbd 76e9580 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
---
tags:
- bert
- oBERT
- sparsity
- pruning
- compression
language: en
datasets: squad
---
# oBERT-12-downstream-pruned-block4-90-QAT-squadv1
This model is obtained with [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259).
It corresponds to the model presented in the `Table 3 - 12 Layers - Sparsity 90% - 4-block + QAT`.
```
Pruning method: oBERT downstream block-4 + QAT
Paper: https://arxiv.org/abs/2203.07259
Dataset: SQuADv1
Sparsity: 90%
Number of layers: 12
```
The dev-set performance of this model:
```
EM = 78.84
F1 = 86.68
```
Code: [https://github.com/neuralmagic/sparseml/tree/main/research/optimal_BERT_surgeon_oBERT](https://github.com/neuralmagic/sparseml/tree/main/research/optimal_BERT_surgeon_oBERT)
If you find the model useful, please consider citing our work.
## Citation info
```bibtex
@article{kurtic2022optimal,
title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models},
author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan},
journal={arXiv preprint arXiv:2203.07259},
year={2022}
}
``` |