|
import torch |
|
|
|
from gfpgan.archs.gfpganv1_arch import FacialComponentDiscriminator, GFPGANv1, StyleGAN2GeneratorSFT |
|
from gfpgan.archs.gfpganv1_clean_arch import GFPGANv1Clean, StyleGAN2GeneratorCSFT |
|
|
|
|
|
def test_stylegan2generatorsft(): |
|
"""Test arch: StyleGAN2GeneratorSFT.""" |
|
|
|
|
|
if torch.cuda.is_available(): |
|
net = StyleGAN2GeneratorSFT( |
|
out_size=32, |
|
num_style_feat=512, |
|
num_mlp=8, |
|
channel_multiplier=1, |
|
resample_kernel=(1, 3, 3, 1), |
|
lr_mlp=0.01, |
|
narrow=1, |
|
sft_half=False).cuda().eval() |
|
style = torch.rand((1, 512), dtype=torch.float32).cuda() |
|
condition1 = torch.rand((1, 512, 8, 8), dtype=torch.float32).cuda() |
|
condition2 = torch.rand((1, 512, 16, 16), dtype=torch.float32).cuda() |
|
condition3 = torch.rand((1, 512, 32, 32), dtype=torch.float32).cuda() |
|
conditions = [condition1, condition1, condition2, condition2, condition3, condition3] |
|
output = net([style], conditions) |
|
assert output[0].shape == (1, 3, 32, 32) |
|
assert output[1] is None |
|
|
|
|
|
output = net([style], conditions, return_latents=True) |
|
assert output[0].shape == (1, 3, 32, 32) |
|
assert len(output[1]) == 1 |
|
|
|
assert output[1][0].shape == (8, 512) |
|
|
|
|
|
output = net([style], conditions, randomize_noise=False) |
|
assert output[0].shape == (1, 3, 32, 32) |
|
assert output[1] is None |
|
|
|
|
|
output = net([style, style], conditions, truncation=0.5, truncation_latent=style) |
|
assert output[0].shape == (1, 3, 32, 32) |
|
assert output[1] is None |
|
|
|
|
|
def test_gfpganv1(): |
|
"""Test arch: GFPGANv1.""" |
|
|
|
|
|
if torch.cuda.is_available(): |
|
net = GFPGANv1( |
|
out_size=32, |
|
num_style_feat=512, |
|
channel_multiplier=1, |
|
resample_kernel=(1, 3, 3, 1), |
|
decoder_load_path=None, |
|
fix_decoder=True, |
|
|
|
num_mlp=8, |
|
lr_mlp=0.01, |
|
input_is_latent=False, |
|
different_w=False, |
|
narrow=1, |
|
sft_half=True).cuda().eval() |
|
img = torch.rand((1, 3, 32, 32), dtype=torch.float32).cuda() |
|
output = net(img) |
|
assert output[0].shape == (1, 3, 32, 32) |
|
assert len(output[1]) == 3 |
|
|
|
assert output[1][0].shape == (1, 3, 8, 8) |
|
assert output[1][1].shape == (1, 3, 16, 16) |
|
assert output[1][2].shape == (1, 3, 32, 32) |
|
|
|
|
|
net = GFPGANv1( |
|
out_size=32, |
|
num_style_feat=512, |
|
channel_multiplier=1, |
|
resample_kernel=(1, 3, 3, 1), |
|
decoder_load_path=None, |
|
fix_decoder=True, |
|
|
|
num_mlp=8, |
|
lr_mlp=0.01, |
|
input_is_latent=False, |
|
different_w=True, |
|
narrow=1, |
|
sft_half=True).cuda().eval() |
|
img = torch.rand((1, 3, 32, 32), dtype=torch.float32).cuda() |
|
output = net(img) |
|
assert output[0].shape == (1, 3, 32, 32) |
|
assert len(output[1]) == 3 |
|
|
|
assert output[1][0].shape == (1, 3, 8, 8) |
|
assert output[1][1].shape == (1, 3, 16, 16) |
|
assert output[1][2].shape == (1, 3, 32, 32) |
|
|
|
|
|
def test_facialcomponentdiscriminator(): |
|
"""Test arch: FacialComponentDiscriminator.""" |
|
|
|
|
|
if torch.cuda.is_available(): |
|
net = FacialComponentDiscriminator().cuda().eval() |
|
img = torch.rand((1, 3, 32, 32), dtype=torch.float32).cuda() |
|
output = net(img) |
|
assert len(output) == 2 |
|
assert output[0].shape == (1, 1, 8, 8) |
|
assert output[1] is None |
|
|
|
|
|
output = net(img, return_feats=True) |
|
assert len(output) == 2 |
|
assert output[0].shape == (1, 1, 8, 8) |
|
assert len(output[1]) == 2 |
|
assert output[1][0].shape == (1, 128, 16, 16) |
|
assert output[1][1].shape == (1, 256, 8, 8) |
|
|
|
|
|
def test_stylegan2generatorcsft(): |
|
"""Test arch: StyleGAN2GeneratorCSFT.""" |
|
|
|
|
|
if torch.cuda.is_available(): |
|
net = StyleGAN2GeneratorCSFT( |
|
out_size=32, num_style_feat=512, num_mlp=8, channel_multiplier=1, narrow=1, sft_half=False).cuda().eval() |
|
style = torch.rand((1, 512), dtype=torch.float32).cuda() |
|
condition1 = torch.rand((1, 512, 8, 8), dtype=torch.float32).cuda() |
|
condition2 = torch.rand((1, 512, 16, 16), dtype=torch.float32).cuda() |
|
condition3 = torch.rand((1, 512, 32, 32), dtype=torch.float32).cuda() |
|
conditions = [condition1, condition1, condition2, condition2, condition3, condition3] |
|
output = net([style], conditions) |
|
assert output[0].shape == (1, 3, 32, 32) |
|
assert output[1] is None |
|
|
|
|
|
output = net([style], conditions, return_latents=True) |
|
assert output[0].shape == (1, 3, 32, 32) |
|
assert len(output[1]) == 1 |
|
|
|
assert output[1][0].shape == (8, 512) |
|
|
|
|
|
output = net([style], conditions, randomize_noise=False) |
|
assert output[0].shape == (1, 3, 32, 32) |
|
assert output[1] is None |
|
|
|
|
|
output = net([style, style], conditions, truncation=0.5, truncation_latent=style) |
|
assert output[0].shape == (1, 3, 32, 32) |
|
assert output[1] is None |
|
|
|
|
|
def test_gfpganv1clean(): |
|
"""Test arch: GFPGANv1Clean.""" |
|
|
|
|
|
if torch.cuda.is_available(): |
|
net = GFPGANv1Clean( |
|
out_size=32, |
|
num_style_feat=512, |
|
channel_multiplier=1, |
|
decoder_load_path=None, |
|
fix_decoder=True, |
|
|
|
num_mlp=8, |
|
input_is_latent=False, |
|
different_w=False, |
|
narrow=1, |
|
sft_half=True).cuda().eval() |
|
|
|
img = torch.rand((1, 3, 32, 32), dtype=torch.float32).cuda() |
|
output = net(img) |
|
assert output[0].shape == (1, 3, 32, 32) |
|
assert len(output[1]) == 3 |
|
|
|
assert output[1][0].shape == (1, 3, 8, 8) |
|
assert output[1][1].shape == (1, 3, 16, 16) |
|
assert output[1][2].shape == (1, 3, 32, 32) |
|
|
|
|
|
net = GFPGANv1Clean( |
|
out_size=32, |
|
num_style_feat=512, |
|
channel_multiplier=1, |
|
decoder_load_path=None, |
|
fix_decoder=True, |
|
|
|
num_mlp=8, |
|
input_is_latent=False, |
|
different_w=True, |
|
narrow=1, |
|
sft_half=True).cuda().eval() |
|
img = torch.rand((1, 3, 32, 32), dtype=torch.float32).cuda() |
|
output = net(img) |
|
assert output[0].shape == (1, 3, 32, 32) |
|
assert len(output[1]) == 3 |
|
|
|
assert output[1][0].shape == (1, 3, 8, 8) |
|
assert output[1][1].shape == (1, 3, 16, 16) |
|
assert output[1][2].shape == (1, 3, 32, 32) |
|
|