---
base_model: sentence-transformers/paraphrase-mpnet-base-v2
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: I'm encountering errors with a pod in the "kube-public" namespace. Any suggestions
on how to debug it?
- text: Can you check sandbox-1 for problems?
- text: I need permissions for the prod-aws account to troubleshoot an issue.
- text: Can you tell me about your hobbies?
- text: How can I reduce stress?
inference: true
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.9961538461538462
name: Accuracy
---
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 5 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NONE |
- 'How do I learn to play the guitar?'
- "What's the longest river in the world?"
- 'How do I overcome procrastination?'
|
| KUBIE | - 'What logs should I check to identify container crashes in the qa-soc-svcs namespace?'
- 'Can you suggest ways to troubleshoot an image pull error in the "kube-public" namespace?'
- "I'm encountering errors with a pod in the sandbox-6 namespace. Any suggestions on how to debug it?"
|
| aws_iam | - 'Show me the IAM role details including attached policies.'
- 'Show me the IAM roles that have the "admin" prefix.'
- 'How can I get detailed information about a particular IAM role?'
|
| DOC | - 'How to access ArgoCD on Production?'
- 'How to run terraform in CDO?'
- 'How to push images to dockerhub.cisco.com?'
|
| access_management | - 'Access to prod-aws infrastructure is required urgently for a deployment.'
- 'Could you provide me access to the dev-aws resources?'
- 'I require access to the prod-sagemaker instance for machine learning experiments.'
|
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.9962 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("How can I reduce stress?")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 1 | 8.5408 | 17 |
| Label | Training Sample Count |
|:------------------|:----------------------|
| aws_iam | 20 |
| access_management | 20 |
| DOC | 18 |
| KUBIE | 20 |
| NONE | 20 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:-------:|:-------------:|:---------------:|
| 0.0021 | 1 | 0.2675 | - |
| 0.1042 | 50 | 0.1143 | - |
| 0.2083 | 100 | 0.0578 | - |
| 0.3125 | 150 | 0.0028 | - |
| 0.4167 | 200 | 0.0032 | - |
| 0.5208 | 250 | 0.0007 | - |
| 0.625 | 300 | 0.0006 | - |
| 0.7292 | 350 | 0.0004 | - |
| 0.8333 | 400 | 0.0005 | - |
| 0.9375 | 450 | 0.0006 | - |
| **1.0** | **480** | **-** | **0.0027** |
| 1.0417 | 500 | 0.0004 | - |
| 1.1458 | 550 | 0.0002 | - |
| 1.25 | 600 | 0.0003 | - |
| 1.3542 | 650 | 0.0002 | - |
| 1.4583 | 700 | 0.0002 | - |
| 1.5625 | 750 | 0.0002 | - |
| 1.6667 | 800 | 0.0002 | - |
| 1.7708 | 850 | 0.0002 | - |
| 1.875 | 900 | 0.0002 | - |
| 1.9792 | 950 | 0.0001 | - |
| 2.0 | 960 | - | 0.0032 |
| 2.0833 | 1000 | 0.0001 | - |
| 2.1875 | 1050 | 0.0002 | - |
| 2.2917 | 1100 | 0.0001 | - |
| 2.3958 | 1150 | 0.0002 | - |
| 2.5 | 1200 | 0.0002 | - |
| 2.6042 | 1250 | 0.0001 | - |
| 2.7083 | 1300 | 0.0002 | - |
| 2.8125 | 1350 | 0.0001 | - |
| 2.9167 | 1400 | 0.0001 | - |
| 3.0 | 1440 | - | 0.004 |
| 3.0208 | 1450 | 0.0001 | - |
| 3.125 | 1500 | 0.0001 | - |
| 3.2292 | 1550 | 0.0002 | - |
| 3.3333 | 1600 | 0.0002 | - |
| 3.4375 | 1650 | 0.0001 | - |
| 3.5417 | 1700 | 0.0002 | - |
| 3.6458 | 1750 | 0.0001 | - |
| 3.75 | 1800 | 0.0001 | - |
| 3.8542 | 1850 | 0.0001 | - |
| 3.9583 | 1900 | 0.0002 | - |
| 4.0 | 1920 | - | 0.0037 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.9.6
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.40.1
- PyTorch: 2.1.2
- Datasets: 2.19.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```