nguyenthanhdo commited on
Commit
0ebd7b6
1 Parent(s): 99862b4

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. Qwen_Qwen2-7B-Instruct-lora-2024-06-29-17-30-14.yml +72 -0
  2. README.md +173 -0
  3. adapter_config.json +34 -0
  4. adapter_model.bin +3 -0
  5. added_tokens.json +5 -0
  6. checkpoint-158/README.md +202 -0
  7. checkpoint-158/adapter_config.json +34 -0
  8. checkpoint-158/adapter_model.safetensors +3 -0
  9. checkpoint-158/added_tokens.json +5 -0
  10. checkpoint-158/merges.txt +0 -0
  11. checkpoint-158/optimizer.pt +3 -0
  12. checkpoint-158/rng_state.pth +3 -0
  13. checkpoint-158/scheduler.pt +3 -0
  14. checkpoint-158/special_tokens_map.json +20 -0
  15. checkpoint-158/tokenizer.json +0 -0
  16. checkpoint-158/tokenizer_config.json +43 -0
  17. checkpoint-158/trainer_state.json +1219 -0
  18. checkpoint-158/training_args.bin +3 -0
  19. checkpoint-158/vocab.json +0 -0
  20. checkpoint-237/README.md +202 -0
  21. checkpoint-237/adapter_config.json +34 -0
  22. checkpoint-237/adapter_model.safetensors +3 -0
  23. checkpoint-237/added_tokens.json +5 -0
  24. checkpoint-237/merges.txt +0 -0
  25. checkpoint-237/optimizer.pt +3 -0
  26. checkpoint-237/rng_state.pth +3 -0
  27. checkpoint-237/scheduler.pt +3 -0
  28. checkpoint-237/special_tokens_map.json +20 -0
  29. checkpoint-237/tokenizer.json +0 -0
  30. checkpoint-237/tokenizer_config.json +43 -0
  31. checkpoint-237/trainer_state.json +1812 -0
  32. checkpoint-237/training_args.bin +3 -0
  33. checkpoint-237/vocab.json +0 -0
  34. checkpoint-316/README.md +202 -0
  35. checkpoint-316/adapter_config.json +34 -0
  36. checkpoint-316/adapter_model.safetensors +3 -0
  37. checkpoint-316/added_tokens.json +5 -0
  38. checkpoint-316/merges.txt +0 -0
  39. checkpoint-316/optimizer.pt +3 -0
  40. checkpoint-316/rng_state.pth +3 -0
  41. checkpoint-316/scheduler.pt +3 -0
  42. checkpoint-316/special_tokens_map.json +20 -0
  43. checkpoint-316/tokenizer.json +0 -0
  44. checkpoint-316/tokenizer_config.json +43 -0
  45. checkpoint-316/trainer_state.json +2405 -0
  46. checkpoint-316/training_args.bin +3 -0
  47. checkpoint-316/vocab.json +0 -0
  48. checkpoint-395/README.md +202 -0
  49. checkpoint-395/adapter_config.json +34 -0
  50. checkpoint-395/adapter_model.safetensors +3 -0
Qwen_Qwen2-7B-Instruct-lora-2024-06-29-17-30-14.yml ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ base_model: Qwen/Qwen2-7B-Instruct
2
+ model_type: AutoModelForCausalLM
3
+ tokenizer_type: AutoTokenizer
4
+
5
+ load_in_8bit: false
6
+ load_in_4bit: false
7
+ strict: false
8
+
9
+ datasets:
10
+ - path: /workspace/axolotl/vinh/PAL/input_output_qwen.json
11
+ type: input_output
12
+ - path: /workspace/axolotl/vinh/INSTRUCT/input_output_qwen.json
13
+ type: input_output
14
+ dataset_prepared_path:
15
+ val_set_size: 0.05
16
+ eval_sample_packing: false
17
+ output_dir: /workspace/axolotl/vinh/Qwen_Qwen2-7B-Instruct-lora-2024-06-29-17-30-14
18
+
19
+ sequence_len: 2048
20
+ sample_packing: false
21
+ pad_to_sequence_len: false
22
+
23
+ adapter: lora
24
+ lora_model_dir:
25
+ lora_r: 64
26
+ lora_alpha: 128
27
+ lora_dropout: 0.05
28
+ lora_target_linear: true
29
+ lora_fan_in_fan_out:
30
+
31
+ wandb_project:
32
+ wandb_entity:
33
+ wandb_watch:
34
+ wandb_name:
35
+ wandb_log_model:
36
+
37
+ gradient_accumulation_steps: 128
38
+ micro_batch_size: 1
39
+ num_epochs: 3
40
+ optimizer: paged_adamw_32bit
41
+ lr_scheduler: cosine
42
+ learning_rate: 2e-4
43
+
44
+ train_on_inputs: false
45
+ group_by_length: false
46
+ bf16: auto
47
+ fp16:
48
+ tf32: false
49
+
50
+ gradient_checkpointing: false
51
+ early_stopping_patience:
52
+ resume_from_checkpoint:
53
+ local_rank:
54
+ logging_steps: 1
55
+ xformers_attention:
56
+ flash_attention: true
57
+ s2_attention:
58
+
59
+ loss_watchdog_threshold: 5.0
60
+ loss_watchdog_patience: 3
61
+
62
+ warmup_steps: 10
63
+ evals_per_epoch: 10
64
+ eval_table_size:
65
+ eval_max_new_tokens: 512
66
+ saves_per_epoch: 2
67
+ save_total_limit: 20
68
+ debug:
69
+ deepspeed:
70
+ weight_decay: 0.0
71
+ fsdp:
72
+ fsdp_config:
README.md ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2-7B-Instruct
3
+ library_name: peft
4
+ license: apache-2.0
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: workspace/axolotl/vinh/Qwen_Qwen2-7B-Instruct-lora-2024-06-29-17-30-14
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.1`
19
+ ```yaml
20
+ base_model: Qwen/Qwen2-7B-Instruct
21
+ model_type: AutoModelForCausalLM
22
+ tokenizer_type: AutoTokenizer
23
+
24
+ load_in_8bit: false
25
+ load_in_4bit: false
26
+ strict: false
27
+
28
+ datasets:
29
+ - path: /workspace/axolotl/vinh/PAL/input_output_qwen.json
30
+ type: input_output
31
+ - path: /workspace/axolotl/vinh/INSTRUCT/input_output_qwen.json
32
+ type: input_output
33
+ dataset_prepared_path:
34
+ val_set_size: 0.05
35
+ eval_sample_packing: false
36
+ output_dir: /workspace/axolotl/vinh/Qwen_Qwen2-7B-Instruct-lora-2024-06-29-17-30-14
37
+
38
+ sequence_len: 2048
39
+ sample_packing: false
40
+ pad_to_sequence_len: false
41
+
42
+ adapter: lora
43
+ lora_model_dir:
44
+ lora_r: 64
45
+ lora_alpha: 128
46
+ lora_dropout: 0.05
47
+ lora_target_linear: true
48
+ lora_fan_in_fan_out:
49
+
50
+ wandb_project:
51
+ wandb_entity:
52
+ wandb_watch:
53
+ wandb_name:
54
+ wandb_log_model:
55
+
56
+ gradient_accumulation_steps: 128
57
+ micro_batch_size: 1
58
+ num_epochs: 3
59
+ optimizer: paged_adamw_32bit
60
+ lr_scheduler: cosine
61
+ learning_rate: 2e-4
62
+
63
+ train_on_inputs: false
64
+ group_by_length: false
65
+ bf16: auto
66
+ fp16:
67
+ tf32: false
68
+
69
+ gradient_checkpointing: false
70
+ early_stopping_patience:
71
+ resume_from_checkpoint:
72
+ local_rank:
73
+ logging_steps: 1
74
+ xformers_attention:
75
+ flash_attention: true
76
+ s2_attention:
77
+
78
+ loss_watchdog_threshold: 5.0
79
+ loss_watchdog_patience: 3
80
+
81
+ warmup_steps: 10
82
+ evals_per_epoch: 10
83
+ eval_table_size:
84
+ eval_max_new_tokens: 512
85
+ saves_per_epoch: 2
86
+ save_total_limit: 20
87
+ debug:
88
+ deepspeed:
89
+ weight_decay: 0.0
90
+ fsdp:
91
+ fsdp_config:
92
+
93
+ ```
94
+
95
+ </details><br>
96
+
97
+ # workspace/axolotl/vinh/Qwen_Qwen2-7B-Instruct-lora-2024-06-29-17-30-14
98
+
99
+ This model is a fine-tuned version of [Qwen/Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) on the None dataset.
100
+ It achieves the following results on the evaluation set:
101
+ - Loss: 0.0911
102
+
103
+ ## Model description
104
+
105
+ More information needed
106
+
107
+ ## Intended uses & limitations
108
+
109
+ More information needed
110
+
111
+ ## Training and evaluation data
112
+
113
+ More information needed
114
+
115
+ ## Training procedure
116
+
117
+ ### Training hyperparameters
118
+
119
+ The following hyperparameters were used during training:
120
+ - learning_rate: 0.0002
121
+ - train_batch_size: 1
122
+ - eval_batch_size: 1
123
+ - seed: 42
124
+ - gradient_accumulation_steps: 128
125
+ - total_train_batch_size: 128
126
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
127
+ - lr_scheduler_type: cosine
128
+ - lr_scheduler_warmup_steps: 10
129
+ - num_epochs: 3
130
+
131
+ ### Training results
132
+
133
+ | Training Loss | Epoch | Step | Validation Loss |
134
+ |:-------------:|:------:|:----:|:---------------:|
135
+ | 0.5558 | 0.0063 | 1 | 0.5296 |
136
+ | 0.1574 | 0.1011 | 16 | 0.1632 |
137
+ | 0.1279 | 0.2023 | 32 | 0.1379 |
138
+ | 0.1166 | 0.3034 | 48 | 0.1265 |
139
+ | 0.1335 | 0.4045 | 64 | 0.1188 |
140
+ | 0.1145 | 0.5056 | 80 | 0.1134 |
141
+ | 0.1036 | 0.6068 | 96 | 0.1082 |
142
+ | 0.0937 | 0.7079 | 112 | 0.1063 |
143
+ | 0.0934 | 0.8090 | 128 | 0.1029 |
144
+ | 0.0975 | 0.9101 | 144 | 0.1008 |
145
+ | 0.0657 | 1.0113 | 160 | 0.0980 |
146
+ | 0.0671 | 1.1124 | 176 | 0.0990 |
147
+ | 0.0664 | 1.2135 | 192 | 0.0986 |
148
+ | 0.0735 | 1.3146 | 208 | 0.0965 |
149
+ | 0.0694 | 1.4158 | 224 | 0.0944 |
150
+ | 0.0555 | 1.5169 | 240 | 0.0923 |
151
+ | 0.0719 | 1.6180 | 256 | 0.0914 |
152
+ | 0.071 | 1.7191 | 272 | 0.0894 |
153
+ | 0.073 | 1.8203 | 288 | 0.0876 |
154
+ | 0.0543 | 1.9214 | 304 | 0.0869 |
155
+ | 0.043 | 2.0225 | 320 | 0.0866 |
156
+ | 0.0333 | 2.1236 | 336 | 0.0934 |
157
+ | 0.0392 | 2.2248 | 352 | 0.0924 |
158
+ | 0.0453 | 2.3259 | 368 | 0.0919 |
159
+ | 0.0488 | 2.4270 | 384 | 0.0920 |
160
+ | 0.0361 | 2.5281 | 400 | 0.0915 |
161
+ | 0.0357 | 2.6293 | 416 | 0.0912 |
162
+ | 0.0364 | 2.7304 | 432 | 0.0912 |
163
+ | 0.0365 | 2.8315 | 448 | 0.0912 |
164
+ | 0.0338 | 2.9326 | 464 | 0.0911 |
165
+
166
+
167
+ ### Framework versions
168
+
169
+ - PEFT 0.11.1
170
+ - Transformers 4.41.1
171
+ - Pytorch 2.1.2+cu118
172
+ - Datasets 2.19.1
173
+ - Tokenizers 0.19.1
adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2-7B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 128,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "gate_proj",
24
+ "k_proj",
25
+ "v_proj",
26
+ "up_proj",
27
+ "q_proj",
28
+ "down_proj",
29
+ "o_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:989c52ed49f2b3eb9fdbc03b716fe2822a07f81ec9ec0ff54a51da1d92901ba3
3
+ size 323103018
added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
checkpoint-158/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2-7B-Instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-158/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2-7B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 128,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "gate_proj",
24
+ "k_proj",
25
+ "v_proj",
26
+ "up_proj",
27
+ "q_proj",
28
+ "down_proj",
29
+ "o_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-158/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd57475cf3a69749a0fef1429b20c51519c084ebaaf344ad05267e29ed708f26
3
+ size 323014560
checkpoint-158/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
checkpoint-158/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-158/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db8ab37707b47c35d9b7d220287747cffab1f33c6adfe77336fa8d3ad018c728
3
+ size 1292086650
checkpoint-158/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad9cf99e8e623b754524495c254b3467aa5252db4b3b97687a941227214007d3
3
+ size 14244
checkpoint-158/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1d2c8d1e6ba232f35533959b3214b34c53631f8b9829d19c5c6a0461e373c57
3
+ size 1064
checkpoint-158/special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|im_end|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
checkpoint-158/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-158/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|im_end|>",
37
+ "errors": "replace",
38
+ "model_max_length": 131072,
39
+ "pad_token": "<|endoftext|>",
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "Qwen2Tokenizer",
42
+ "unk_token": null
43
+ }
checkpoint-158/trainer_state.json ADDED
@@ -0,0 +1,1219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9986174205016789,
5
+ "eval_steps": 16,
6
+ "global_step": 158,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.006320363420896702,
13
+ "grad_norm": 1.03125,
14
+ "learning_rate": 2e-05,
15
+ "loss": 0.5558,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.006320363420896702,
20
+ "eval_loss": 0.5296231508255005,
21
+ "eval_runtime": 52.0012,
22
+ "eval_samples_per_second": 20.5,
23
+ "eval_steps_per_second": 20.5,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.012640726841793404,
28
+ "grad_norm": 0.96484375,
29
+ "learning_rate": 4e-05,
30
+ "loss": 0.5376,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.018961090262690106,
35
+ "grad_norm": 0.9609375,
36
+ "learning_rate": 6e-05,
37
+ "loss": 0.5124,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.025281453683586808,
42
+ "grad_norm": 0.71484375,
43
+ "learning_rate": 8e-05,
44
+ "loss": 0.4336,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.03160181710448351,
49
+ "grad_norm": 0.427734375,
50
+ "learning_rate": 0.0001,
51
+ "loss": 0.332,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.03792218052538021,
56
+ "grad_norm": 0.326171875,
57
+ "learning_rate": 0.00012,
58
+ "loss": 0.2481,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.04424254394627691,
63
+ "grad_norm": 0.34375,
64
+ "learning_rate": 0.00014,
65
+ "loss": 0.225,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.050562907367173615,
70
+ "grad_norm": 0.30078125,
71
+ "learning_rate": 0.00016,
72
+ "loss": 0.1996,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.05688327078807032,
77
+ "grad_norm": 0.298828125,
78
+ "learning_rate": 0.00018,
79
+ "loss": 0.1811,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.06320363420896702,
84
+ "grad_norm": 0.240234375,
85
+ "learning_rate": 0.0002,
86
+ "loss": 0.1933,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.06952399762986372,
91
+ "grad_norm": 0.267578125,
92
+ "learning_rate": 0.00019999770790755575,
93
+ "loss": 0.2048,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.07584436105076042,
98
+ "grad_norm": 0.2177734375,
99
+ "learning_rate": 0.00019999083173529673,
100
+ "loss": 0.1728,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.08216472447165712,
105
+ "grad_norm": 0.1748046875,
106
+ "learning_rate": 0.00019997937179843937,
107
+ "loss": 0.1804,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.08848508789255383,
112
+ "grad_norm": 0.1826171875,
113
+ "learning_rate": 0.0001999633286223284,
114
+ "loss": 0.1894,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.09480545131345053,
119
+ "grad_norm": 0.15234375,
120
+ "learning_rate": 0.00019994270294241266,
121
+ "loss": 0.1633,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.10112581473434723,
126
+ "grad_norm": 0.1455078125,
127
+ "learning_rate": 0.00019991749570421146,
128
+ "loss": 0.1574,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.10112581473434723,
133
+ "eval_loss": 0.16320638358592987,
134
+ "eval_runtime": 56.0359,
135
+ "eval_samples_per_second": 19.024,
136
+ "eval_steps_per_second": 19.024,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.10744617815524393,
141
+ "grad_norm": 0.1328125,
142
+ "learning_rate": 0.0001998877080632712,
143
+ "loss": 0.1589,
144
+ "step": 17
145
+ },
146
+ {
147
+ "epoch": 0.11376654157614063,
148
+ "grad_norm": 0.1650390625,
149
+ "learning_rate": 0.00019985334138511237,
150
+ "loss": 0.1718,
151
+ "step": 18
152
+ },
153
+ {
154
+ "epoch": 0.12008690499703734,
155
+ "grad_norm": 0.1455078125,
156
+ "learning_rate": 0.00019981439724516716,
157
+ "loss": 0.156,
158
+ "step": 19
159
+ },
160
+ {
161
+ "epoch": 0.12640726841793404,
162
+ "grad_norm": 0.162109375,
163
+ "learning_rate": 0.0001997708774287068,
164
+ "loss": 0.1781,
165
+ "step": 20
166
+ },
167
+ {
168
+ "epoch": 0.13272763183883074,
169
+ "grad_norm": 0.1416015625,
170
+ "learning_rate": 0.00019972278393076023,
171
+ "loss": 0.1347,
172
+ "step": 21
173
+ },
174
+ {
175
+ "epoch": 0.13904799525972744,
176
+ "grad_norm": 0.130859375,
177
+ "learning_rate": 0.0001996701189560223,
178
+ "loss": 0.1389,
179
+ "step": 22
180
+ },
181
+ {
182
+ "epoch": 0.14536835868062414,
183
+ "grad_norm": 0.138671875,
184
+ "learning_rate": 0.00019961288491875278,
185
+ "loss": 0.1418,
186
+ "step": 23
187
+ },
188
+ {
189
+ "epoch": 0.15168872210152085,
190
+ "grad_norm": 0.11279296875,
191
+ "learning_rate": 0.00019955108444266585,
192
+ "loss": 0.1269,
193
+ "step": 24
194
+ },
195
+ {
196
+ "epoch": 0.15800908552241755,
197
+ "grad_norm": 0.1435546875,
198
+ "learning_rate": 0.00019948472036080949,
199
+ "loss": 0.1659,
200
+ "step": 25
201
+ },
202
+ {
203
+ "epoch": 0.16432944894331425,
204
+ "grad_norm": 0.13671875,
205
+ "learning_rate": 0.00019941379571543596,
206
+ "loss": 0.124,
207
+ "step": 26
208
+ },
209
+ {
210
+ "epoch": 0.17064981236421095,
211
+ "grad_norm": 0.1396484375,
212
+ "learning_rate": 0.00019933831375786216,
213
+ "loss": 0.1423,
214
+ "step": 27
215
+ },
216
+ {
217
+ "epoch": 0.17697017578510765,
218
+ "grad_norm": 0.1494140625,
219
+ "learning_rate": 0.00019925827794832056,
220
+ "loss": 0.1394,
221
+ "step": 28
222
+ },
223
+ {
224
+ "epoch": 0.18329053920600435,
225
+ "grad_norm": 0.1279296875,
226
+ "learning_rate": 0.00019917369195580063,
227
+ "loss": 0.1168,
228
+ "step": 29
229
+ },
230
+ {
231
+ "epoch": 0.18961090262690106,
232
+ "grad_norm": 0.1435546875,
233
+ "learning_rate": 0.00019908455965788067,
234
+ "loss": 0.147,
235
+ "step": 30
236
+ },
237
+ {
238
+ "epoch": 0.19593126604779776,
239
+ "grad_norm": 0.1318359375,
240
+ "learning_rate": 0.00019899088514055004,
241
+ "loss": 0.13,
242
+ "step": 31
243
+ },
244
+ {
245
+ "epoch": 0.20225162946869446,
246
+ "grad_norm": 0.11865234375,
247
+ "learning_rate": 0.00019889267269802176,
248
+ "loss": 0.1279,
249
+ "step": 32
250
+ },
251
+ {
252
+ "epoch": 0.20225162946869446,
253
+ "eval_loss": 0.137903094291687,
254
+ "eval_runtime": 55.5398,
255
+ "eval_samples_per_second": 19.193,
256
+ "eval_steps_per_second": 19.193,
257
+ "step": 32
258
+ },
259
+ {
260
+ "epoch": 0.20857199288959116,
261
+ "grad_norm": 0.125,
262
+ "learning_rate": 0.00019878992683253582,
263
+ "loss": 0.123,
264
+ "step": 33
265
+ },
266
+ {
267
+ "epoch": 0.21489235631048786,
268
+ "grad_norm": 0.125,
269
+ "learning_rate": 0.00019868265225415265,
270
+ "loss": 0.1264,
271
+ "step": 34
272
+ },
273
+ {
274
+ "epoch": 0.22121271973138457,
275
+ "grad_norm": 0.1279296875,
276
+ "learning_rate": 0.00019857085388053723,
277
+ "loss": 0.1295,
278
+ "step": 35
279
+ },
280
+ {
281
+ "epoch": 0.22753308315228127,
282
+ "grad_norm": 0.138671875,
283
+ "learning_rate": 0.00019845453683673368,
284
+ "loss": 0.1448,
285
+ "step": 36
286
+ },
287
+ {
288
+ "epoch": 0.23385344657317797,
289
+ "grad_norm": 0.126953125,
290
+ "learning_rate": 0.00019833370645493047,
291
+ "loss": 0.1293,
292
+ "step": 37
293
+ },
294
+ {
295
+ "epoch": 0.24017380999407467,
296
+ "grad_norm": 0.130859375,
297
+ "learning_rate": 0.0001982083682742156,
298
+ "loss": 0.1387,
299
+ "step": 38
300
+ },
301
+ {
302
+ "epoch": 0.24649417341497137,
303
+ "grad_norm": 0.10888671875,
304
+ "learning_rate": 0.00019807852804032305,
305
+ "loss": 0.1027,
306
+ "step": 39
307
+ },
308
+ {
309
+ "epoch": 0.2528145368358681,
310
+ "grad_norm": 0.1240234375,
311
+ "learning_rate": 0.00019794419170536916,
312
+ "loss": 0.1166,
313
+ "step": 40
314
+ },
315
+ {
316
+ "epoch": 0.2591349002567648,
317
+ "grad_norm": 0.1337890625,
318
+ "learning_rate": 0.00019780536542758,
319
+ "loss": 0.1218,
320
+ "step": 41
321
+ },
322
+ {
323
+ "epoch": 0.2654552636776615,
324
+ "grad_norm": 0.11865234375,
325
+ "learning_rate": 0.00019766205557100868,
326
+ "loss": 0.1291,
327
+ "step": 42
328
+ },
329
+ {
330
+ "epoch": 0.2717756270985582,
331
+ "grad_norm": 0.138671875,
332
+ "learning_rate": 0.00019751426870524407,
333
+ "loss": 0.1409,
334
+ "step": 43
335
+ },
336
+ {
337
+ "epoch": 0.2780959905194549,
338
+ "grad_norm": 0.12109375,
339
+ "learning_rate": 0.00019736201160510931,
340
+ "loss": 0.1275,
341
+ "step": 44
342
+ },
343
+ {
344
+ "epoch": 0.2844163539403516,
345
+ "grad_norm": 0.125,
346
+ "learning_rate": 0.0001972052912503514,
347
+ "loss": 0.1319,
348
+ "step": 45
349
+ },
350
+ {
351
+ "epoch": 0.2907367173612483,
352
+ "grad_norm": 0.12158203125,
353
+ "learning_rate": 0.00019704411482532116,
354
+ "loss": 0.134,
355
+ "step": 46
356
+ },
357
+ {
358
+ "epoch": 0.297057080782145,
359
+ "grad_norm": 0.119140625,
360
+ "learning_rate": 0.00019687848971864389,
361
+ "loss": 0.1334,
362
+ "step": 47
363
+ },
364
+ {
365
+ "epoch": 0.3033774442030417,
366
+ "grad_norm": 0.119140625,
367
+ "learning_rate": 0.0001967084235228807,
368
+ "loss": 0.1166,
369
+ "step": 48
370
+ },
371
+ {
372
+ "epoch": 0.3033774442030417,
373
+ "eval_loss": 0.12646569311618805,
374
+ "eval_runtime": 55.7378,
375
+ "eval_samples_per_second": 19.125,
376
+ "eval_steps_per_second": 19.125,
377
+ "step": 48
378
+ },
379
+ {
380
+ "epoch": 0.3096978076239384,
381
+ "grad_norm": 0.12109375,
382
+ "learning_rate": 0.00019653392403418043,
383
+ "loss": 0.1242,
384
+ "step": 49
385
+ },
386
+ {
387
+ "epoch": 0.3160181710448351,
388
+ "grad_norm": 0.1201171875,
389
+ "learning_rate": 0.0001963549992519223,
390
+ "loss": 0.1309,
391
+ "step": 50
392
+ },
393
+ {
394
+ "epoch": 0.3223385344657318,
395
+ "grad_norm": 0.1044921875,
396
+ "learning_rate": 0.00019617165737834916,
397
+ "loss": 0.1041,
398
+ "step": 51
399
+ },
400
+ {
401
+ "epoch": 0.3286588978866285,
402
+ "grad_norm": 0.1318359375,
403
+ "learning_rate": 0.0001959839068181914,
404
+ "loss": 0.1219,
405
+ "step": 52
406
+ },
407
+ {
408
+ "epoch": 0.3349792613075252,
409
+ "grad_norm": 0.12109375,
410
+ "learning_rate": 0.00019579175617828187,
411
+ "loss": 0.1421,
412
+ "step": 53
413
+ },
414
+ {
415
+ "epoch": 0.3412996247284219,
416
+ "grad_norm": 0.11767578125,
417
+ "learning_rate": 0.00019559521426716118,
418
+ "loss": 0.1176,
419
+ "step": 54
420
+ },
421
+ {
422
+ "epoch": 0.3476199881493186,
423
+ "grad_norm": 0.119140625,
424
+ "learning_rate": 0.0001953942900946739,
425
+ "loss": 0.1206,
426
+ "step": 55
427
+ },
428
+ {
429
+ "epoch": 0.3539403515702153,
430
+ "grad_norm": 0.12158203125,
431
+ "learning_rate": 0.00019518899287155556,
432
+ "loss": 0.1174,
433
+ "step": 56
434
+ },
435
+ {
436
+ "epoch": 0.360260714991112,
437
+ "grad_norm": 0.1181640625,
438
+ "learning_rate": 0.0001949793320090105,
439
+ "loss": 0.1228,
440
+ "step": 57
441
+ },
442
+ {
443
+ "epoch": 0.3665810784120087,
444
+ "grad_norm": 0.13671875,
445
+ "learning_rate": 0.00019476531711828027,
446
+ "loss": 0.125,
447
+ "step": 58
448
+ },
449
+ {
450
+ "epoch": 0.3729014418329054,
451
+ "grad_norm": 0.11962890625,
452
+ "learning_rate": 0.0001945469580102031,
453
+ "loss": 0.1094,
454
+ "step": 59
455
+ },
456
+ {
457
+ "epoch": 0.3792218052538021,
458
+ "grad_norm": 0.10498046875,
459
+ "learning_rate": 0.0001943242646947643,
460
+ "loss": 0.0983,
461
+ "step": 60
462
+ },
463
+ {
464
+ "epoch": 0.3855421686746988,
465
+ "grad_norm": 0.1220703125,
466
+ "learning_rate": 0.00019409724738063714,
467
+ "loss": 0.1164,
468
+ "step": 61
469
+ },
470
+ {
471
+ "epoch": 0.3918625320955955,
472
+ "grad_norm": 0.11767578125,
473
+ "learning_rate": 0.00019386591647471506,
474
+ "loss": 0.1124,
475
+ "step": 62
476
+ },
477
+ {
478
+ "epoch": 0.3981828955164922,
479
+ "grad_norm": 0.11669921875,
480
+ "learning_rate": 0.00019363028258163447,
481
+ "loss": 0.1188,
482
+ "step": 63
483
+ },
484
+ {
485
+ "epoch": 0.4045032589373889,
486
+ "grad_norm": 0.12255859375,
487
+ "learning_rate": 0.00019339035650328869,
488
+ "loss": 0.1335,
489
+ "step": 64
490
+ },
491
+ {
492
+ "epoch": 0.4045032589373889,
493
+ "eval_loss": 0.11877521872520447,
494
+ "eval_runtime": 55.4677,
495
+ "eval_samples_per_second": 19.218,
496
+ "eval_steps_per_second": 19.218,
497
+ "step": 64
498
+ },
499
+ {
500
+ "epoch": 0.4108236223582856,
501
+ "grad_norm": 0.1279296875,
502
+ "learning_rate": 0.0001931461492383327,
503
+ "loss": 0.1447,
504
+ "step": 65
505
+ },
506
+ {
507
+ "epoch": 0.4171439857791823,
508
+ "grad_norm": 0.1044921875,
509
+ "learning_rate": 0.00019289767198167916,
510
+ "loss": 0.1004,
511
+ "step": 66
512
+ },
513
+ {
514
+ "epoch": 0.423464349200079,
515
+ "grad_norm": 0.1171875,
516
+ "learning_rate": 0.00019264493612398481,
517
+ "loss": 0.1228,
518
+ "step": 67
519
+ },
520
+ {
521
+ "epoch": 0.42978471262097573,
522
+ "grad_norm": 0.099609375,
523
+ "learning_rate": 0.0001923879532511287,
524
+ "loss": 0.0963,
525
+ "step": 68
526
+ },
527
+ {
528
+ "epoch": 0.43610507604187243,
529
+ "grad_norm": 0.1015625,
530
+ "learning_rate": 0.0001921267351436808,
531
+ "loss": 0.1025,
532
+ "step": 69
533
+ },
534
+ {
535
+ "epoch": 0.44242543946276913,
536
+ "grad_norm": 0.123046875,
537
+ "learning_rate": 0.0001918612937763622,
538
+ "loss": 0.124,
539
+ "step": 70
540
+ },
541
+ {
542
+ "epoch": 0.44874580288366583,
543
+ "grad_norm": 0.109375,
544
+ "learning_rate": 0.00019159164131749587,
545
+ "loss": 0.1203,
546
+ "step": 71
547
+ },
548
+ {
549
+ "epoch": 0.45506616630456254,
550
+ "grad_norm": 0.109375,
551
+ "learning_rate": 0.00019131779012844912,
552
+ "loss": 0.1052,
553
+ "step": 72
554
+ },
555
+ {
556
+ "epoch": 0.46138652972545924,
557
+ "grad_norm": 0.1162109375,
558
+ "learning_rate": 0.00019103975276306678,
559
+ "loss": 0.1181,
560
+ "step": 73
561
+ },
562
+ {
563
+ "epoch": 0.46770689314635594,
564
+ "grad_norm": 0.11181640625,
565
+ "learning_rate": 0.00019075754196709572,
566
+ "loss": 0.1065,
567
+ "step": 74
568
+ },
569
+ {
570
+ "epoch": 0.47402725656725264,
571
+ "grad_norm": 0.109375,
572
+ "learning_rate": 0.0001904711706776006,
573
+ "loss": 0.1075,
574
+ "step": 75
575
+ },
576
+ {
577
+ "epoch": 0.48034761998814934,
578
+ "grad_norm": 0.11865234375,
579
+ "learning_rate": 0.00019018065202237083,
580
+ "loss": 0.1182,
581
+ "step": 76
582
+ },
583
+ {
584
+ "epoch": 0.48666798340904605,
585
+ "grad_norm": 0.09814453125,
586
+ "learning_rate": 0.00018988599931931866,
587
+ "loss": 0.0913,
588
+ "step": 77
589
+ },
590
+ {
591
+ "epoch": 0.49298834682994275,
592
+ "grad_norm": 0.10791015625,
593
+ "learning_rate": 0.0001895872260758688,
594
+ "loss": 0.103,
595
+ "step": 78
596
+ },
597
+ {
598
+ "epoch": 0.49930871025083945,
599
+ "grad_norm": 0.111328125,
600
+ "learning_rate": 0.00018928434598833912,
601
+ "loss": 0.1106,
602
+ "step": 79
603
+ },
604
+ {
605
+ "epoch": 0.5056290736717362,
606
+ "grad_norm": 0.12451171875,
607
+ "learning_rate": 0.00018897737294131284,
608
+ "loss": 0.1145,
609
+ "step": 80
610
+ },
611
+ {
612
+ "epoch": 0.5056290736717362,
613
+ "eval_loss": 0.11342703551054001,
614
+ "eval_runtime": 55.8581,
615
+ "eval_samples_per_second": 19.084,
616
+ "eval_steps_per_second": 19.084,
617
+ "step": 80
618
+ },
619
+ {
620
+ "epoch": 0.5119494370926329,
621
+ "grad_norm": 0.109375,
622
+ "learning_rate": 0.00018866632100700197,
623
+ "loss": 0.0943,
624
+ "step": 81
625
+ },
626
+ {
627
+ "epoch": 0.5182698005135296,
628
+ "grad_norm": 0.130859375,
629
+ "learning_rate": 0.0001883512044446023,
630
+ "loss": 0.1409,
631
+ "step": 82
632
+ },
633
+ {
634
+ "epoch": 0.5245901639344263,
635
+ "grad_norm": 0.1259765625,
636
+ "learning_rate": 0.00018803203769963967,
637
+ "loss": 0.1364,
638
+ "step": 83
639
+ },
640
+ {
641
+ "epoch": 0.530910527355323,
642
+ "grad_norm": 0.10107421875,
643
+ "learning_rate": 0.0001877088354033077,
644
+ "loss": 0.0904,
645
+ "step": 84
646
+ },
647
+ {
648
+ "epoch": 0.5372308907762197,
649
+ "grad_norm": 0.10107421875,
650
+ "learning_rate": 0.0001873816123717973,
651
+ "loss": 0.0942,
652
+ "step": 85
653
+ },
654
+ {
655
+ "epoch": 0.5435512541971164,
656
+ "grad_norm": 0.11767578125,
657
+ "learning_rate": 0.0001870503836056172,
658
+ "loss": 0.095,
659
+ "step": 86
660
+ },
661
+ {
662
+ "epoch": 0.5498716176180131,
663
+ "grad_norm": 0.10986328125,
664
+ "learning_rate": 0.00018671516428890648,
665
+ "loss": 0.1061,
666
+ "step": 87
667
+ },
668
+ {
669
+ "epoch": 0.5561919810389098,
670
+ "grad_norm": 0.11962890625,
671
+ "learning_rate": 0.00018637596978873835,
672
+ "loss": 0.1209,
673
+ "step": 88
674
+ },
675
+ {
676
+ "epoch": 0.5625123444598065,
677
+ "grad_norm": 0.12451171875,
678
+ "learning_rate": 0.00018603281565441585,
679
+ "loss": 0.1268,
680
+ "step": 89
681
+ },
682
+ {
683
+ "epoch": 0.5688327078807032,
684
+ "grad_norm": 0.11376953125,
685
+ "learning_rate": 0.00018568571761675893,
686
+ "loss": 0.1034,
687
+ "step": 90
688
+ },
689
+ {
690
+ "epoch": 0.5751530713015999,
691
+ "grad_norm": 0.12060546875,
692
+ "learning_rate": 0.00018533469158738344,
693
+ "loss": 0.1265,
694
+ "step": 91
695
+ },
696
+ {
697
+ "epoch": 0.5814734347224966,
698
+ "grad_norm": 0.11328125,
699
+ "learning_rate": 0.0001849797536579715,
700
+ "loss": 0.1123,
701
+ "step": 92
702
+ },
703
+ {
704
+ "epoch": 0.5877937981433933,
705
+ "grad_norm": 0.10498046875,
706
+ "learning_rate": 0.00018462092009953408,
707
+ "loss": 0.1041,
708
+ "step": 93
709
+ },
710
+ {
711
+ "epoch": 0.59411416156429,
712
+ "grad_norm": 0.1171875,
713
+ "learning_rate": 0.0001842582073616649,
714
+ "loss": 0.1197,
715
+ "step": 94
716
+ },
717
+ {
718
+ "epoch": 0.6004345249851867,
719
+ "grad_norm": 0.0986328125,
720
+ "learning_rate": 0.00018389163207178656,
721
+ "loss": 0.0961,
722
+ "step": 95
723
+ },
724
+ {
725
+ "epoch": 0.6067548884060834,
726
+ "grad_norm": 0.1025390625,
727
+ "learning_rate": 0.000183521211034388,
728
+ "loss": 0.1036,
729
+ "step": 96
730
+ },
731
+ {
732
+ "epoch": 0.6067548884060834,
733
+ "eval_loss": 0.10819214582443237,
734
+ "eval_runtime": 56.0566,
735
+ "eval_samples_per_second": 19.017,
736
+ "eval_steps_per_second": 19.017,
737
+ "step": 96
738
+ },
739
+ {
740
+ "epoch": 0.6130752518269801,
741
+ "grad_norm": 0.1015625,
742
+ "learning_rate": 0.00018314696123025454,
743
+ "loss": 0.0953,
744
+ "step": 97
745
+ },
746
+ {
747
+ "epoch": 0.6193956152478768,
748
+ "grad_norm": 0.10791015625,
749
+ "learning_rate": 0.00018276889981568906,
750
+ "loss": 0.091,
751
+ "step": 98
752
+ },
753
+ {
754
+ "epoch": 0.6257159786687735,
755
+ "grad_norm": 0.1103515625,
756
+ "learning_rate": 0.00018238704412172586,
757
+ "loss": 0.0936,
758
+ "step": 99
759
+ },
760
+ {
761
+ "epoch": 0.6320363420896702,
762
+ "grad_norm": 0.11572265625,
763
+ "learning_rate": 0.0001820014116533359,
764
+ "loss": 0.111,
765
+ "step": 100
766
+ },
767
+ {
768
+ "epoch": 0.6383567055105669,
769
+ "grad_norm": 0.1259765625,
770
+ "learning_rate": 0.00018161202008862458,
771
+ "loss": 0.1232,
772
+ "step": 101
773
+ },
774
+ {
775
+ "epoch": 0.6446770689314636,
776
+ "grad_norm": 0.11474609375,
777
+ "learning_rate": 0.00018121888727802113,
778
+ "loss": 0.1072,
779
+ "step": 102
780
+ },
781
+ {
782
+ "epoch": 0.6509974323523603,
783
+ "grad_norm": 0.1103515625,
784
+ "learning_rate": 0.00018082203124346045,
785
+ "loss": 0.1081,
786
+ "step": 103
787
+ },
788
+ {
789
+ "epoch": 0.657317795773257,
790
+ "grad_norm": 0.125,
791
+ "learning_rate": 0.0001804214701775569,
792
+ "loss": 0.1155,
793
+ "step": 104
794
+ },
795
+ {
796
+ "epoch": 0.6636381591941537,
797
+ "grad_norm": 0.11669921875,
798
+ "learning_rate": 0.00018001722244277035,
799
+ "loss": 0.104,
800
+ "step": 105
801
+ },
802
+ {
803
+ "epoch": 0.6699585226150504,
804
+ "grad_norm": 0.10400390625,
805
+ "learning_rate": 0.00017960930657056438,
806
+ "loss": 0.0984,
807
+ "step": 106
808
+ },
809
+ {
810
+ "epoch": 0.6762788860359471,
811
+ "grad_norm": 0.10205078125,
812
+ "learning_rate": 0.00017919774126055673,
813
+ "loss": 0.0931,
814
+ "step": 107
815
+ },
816
+ {
817
+ "epoch": 0.6825992494568438,
818
+ "grad_norm": 0.1044921875,
819
+ "learning_rate": 0.00017878254537966216,
820
+ "loss": 0.1035,
821
+ "step": 108
822
+ },
823
+ {
824
+ "epoch": 0.6889196128777405,
825
+ "grad_norm": 0.1142578125,
826
+ "learning_rate": 0.0001783637379612275,
827
+ "loss": 0.1046,
828
+ "step": 109
829
+ },
830
+ {
831
+ "epoch": 0.6952399762986372,
832
+ "grad_norm": 0.11328125,
833
+ "learning_rate": 0.00017794133820415916,
834
+ "loss": 0.1166,
835
+ "step": 110
836
+ },
837
+ {
838
+ "epoch": 0.7015603397195339,
839
+ "grad_norm": 0.10302734375,
840
+ "learning_rate": 0.00017751536547204295,
841
+ "loss": 0.0937,
842
+ "step": 111
843
+ },
844
+ {
845
+ "epoch": 0.7078807031404306,
846
+ "grad_norm": 0.10302734375,
847
+ "learning_rate": 0.0001770858392922565,
848
+ "loss": 0.0937,
849
+ "step": 112
850
+ },
851
+ {
852
+ "epoch": 0.7078807031404306,
853
+ "eval_loss": 0.10633409768342972,
854
+ "eval_runtime": 54.3141,
855
+ "eval_samples_per_second": 19.627,
856
+ "eval_steps_per_second": 19.627,
857
+ "step": 112
858
+ },
859
+ {
860
+ "epoch": 0.7142010665613273,
861
+ "grad_norm": 0.107421875,
862
+ "learning_rate": 0.00017665277935507398,
863
+ "loss": 0.0908,
864
+ "step": 113
865
+ },
866
+ {
867
+ "epoch": 0.720521429982224,
868
+ "grad_norm": 0.1025390625,
869
+ "learning_rate": 0.00017621620551276366,
870
+ "loss": 0.0896,
871
+ "step": 114
872
+ },
873
+ {
874
+ "epoch": 0.7268417934031207,
875
+ "grad_norm": 0.0986328125,
876
+ "learning_rate": 0.00017577613777867762,
877
+ "loss": 0.0809,
878
+ "step": 115
879
+ },
880
+ {
881
+ "epoch": 0.7331621568240174,
882
+ "grad_norm": 0.10400390625,
883
+ "learning_rate": 0.00017533259632633442,
884
+ "loss": 0.0895,
885
+ "step": 116
886
+ },
887
+ {
888
+ "epoch": 0.7394825202449141,
889
+ "grad_norm": 0.1298828125,
890
+ "learning_rate": 0.00017488560148849427,
891
+ "loss": 0.1193,
892
+ "step": 117
893
+ },
894
+ {
895
+ "epoch": 0.7458028836658108,
896
+ "grad_norm": 0.10791015625,
897
+ "learning_rate": 0.00017443517375622704,
898
+ "loss": 0.1217,
899
+ "step": 118
900
+ },
901
+ {
902
+ "epoch": 0.7521232470867075,
903
+ "grad_norm": 0.115234375,
904
+ "learning_rate": 0.0001739813337779727,
905
+ "loss": 0.1096,
906
+ "step": 119
907
+ },
908
+ {
909
+ "epoch": 0.7584436105076042,
910
+ "grad_norm": 0.10302734375,
911
+ "learning_rate": 0.00017352410235859503,
912
+ "loss": 0.0907,
913
+ "step": 120
914
+ },
915
+ {
916
+ "epoch": 0.7647639739285009,
917
+ "grad_norm": 0.11328125,
918
+ "learning_rate": 0.0001730635004584276,
919
+ "loss": 0.1081,
920
+ "step": 121
921
+ },
922
+ {
923
+ "epoch": 0.7710843373493976,
924
+ "grad_norm": 0.09765625,
925
+ "learning_rate": 0.0001725995491923131,
926
+ "loss": 0.0847,
927
+ "step": 122
928
+ },
929
+ {
930
+ "epoch": 0.7774047007702943,
931
+ "grad_norm": 0.1259765625,
932
+ "learning_rate": 0.0001721322698286354,
933
+ "loss": 0.1134,
934
+ "step": 123
935
+ },
936
+ {
937
+ "epoch": 0.783725064191191,
938
+ "grad_norm": 0.115234375,
939
+ "learning_rate": 0.00017166168378834448,
940
+ "loss": 0.1065,
941
+ "step": 124
942
+ },
943
+ {
944
+ "epoch": 0.7900454276120877,
945
+ "grad_norm": 0.11279296875,
946
+ "learning_rate": 0.00017118781264397446,
947
+ "loss": 0.1078,
948
+ "step": 125
949
+ },
950
+ {
951
+ "epoch": 0.7963657910329844,
952
+ "grad_norm": 0.11767578125,
953
+ "learning_rate": 0.00017071067811865476,
954
+ "loss": 0.1064,
955
+ "step": 126
956
+ },
957
+ {
958
+ "epoch": 0.8026861544538811,
959
+ "grad_norm": 0.1064453125,
960
+ "learning_rate": 0.0001702303020851142,
961
+ "loss": 0.1031,
962
+ "step": 127
963
+ },
964
+ {
965
+ "epoch": 0.8090065178747778,
966
+ "grad_norm": 0.1123046875,
967
+ "learning_rate": 0.00016974670656467824,
968
+ "loss": 0.0934,
969
+ "step": 128
970
+ },
971
+ {
972
+ "epoch": 0.8090065178747778,
973
+ "eval_loss": 0.1029018759727478,
974
+ "eval_runtime": 54.0096,
975
+ "eval_samples_per_second": 19.737,
976
+ "eval_steps_per_second": 19.737,
977
+ "step": 128
978
+ },
979
+ {
980
+ "epoch": 0.8153268812956745,
981
+ "grad_norm": 0.11181640625,
982
+ "learning_rate": 0.0001692599137262597,
983
+ "loss": 0.1022,
984
+ "step": 129
985
+ },
986
+ {
987
+ "epoch": 0.8216472447165712,
988
+ "grad_norm": 0.1025390625,
989
+ "learning_rate": 0.00016876994588534234,
990
+ "loss": 0.0809,
991
+ "step": 130
992
+ },
993
+ {
994
+ "epoch": 0.827967608137468,
995
+ "grad_norm": 0.12353515625,
996
+ "learning_rate": 0.00016827682550295785,
997
+ "loss": 0.0976,
998
+ "step": 131
999
+ },
1000
+ {
1001
+ "epoch": 0.8342879715583646,
1002
+ "grad_norm": 0.11474609375,
1003
+ "learning_rate": 0.0001677805751846563,
1004
+ "loss": 0.1027,
1005
+ "step": 132
1006
+ },
1007
+ {
1008
+ "epoch": 0.8406083349792614,
1009
+ "grad_norm": 0.1142578125,
1010
+ "learning_rate": 0.00016728121767946977,
1011
+ "loss": 0.0912,
1012
+ "step": 133
1013
+ },
1014
+ {
1015
+ "epoch": 0.846928698400158,
1016
+ "grad_norm": 0.10498046875,
1017
+ "learning_rate": 0.00016677877587886956,
1018
+ "loss": 0.0913,
1019
+ "step": 134
1020
+ },
1021
+ {
1022
+ "epoch": 0.8532490618210548,
1023
+ "grad_norm": 0.11474609375,
1024
+ "learning_rate": 0.00016627327281571678,
1025
+ "loss": 0.1078,
1026
+ "step": 135
1027
+ },
1028
+ {
1029
+ "epoch": 0.8595694252419515,
1030
+ "grad_norm": 0.1435546875,
1031
+ "learning_rate": 0.00016576473166320644,
1032
+ "loss": 0.1356,
1033
+ "step": 136
1034
+ },
1035
+ {
1036
+ "epoch": 0.8658897886628482,
1037
+ "grad_norm": 0.10791015625,
1038
+ "learning_rate": 0.00016525317573380525,
1039
+ "loss": 0.1007,
1040
+ "step": 137
1041
+ },
1042
+ {
1043
+ "epoch": 0.8722101520837449,
1044
+ "grad_norm": 0.1044921875,
1045
+ "learning_rate": 0.00016473862847818277,
1046
+ "loss": 0.1005,
1047
+ "step": 138
1048
+ },
1049
+ {
1050
+ "epoch": 0.8785305155046416,
1051
+ "grad_norm": 0.10546875,
1052
+ "learning_rate": 0.00016422111348413657,
1053
+ "loss": 0.1016,
1054
+ "step": 139
1055
+ },
1056
+ {
1057
+ "epoch": 0.8848508789255383,
1058
+ "grad_norm": 0.1025390625,
1059
+ "learning_rate": 0.00016370065447551078,
1060
+ "loss": 0.0898,
1061
+ "step": 140
1062
+ },
1063
+ {
1064
+ "epoch": 0.891171242346435,
1065
+ "grad_norm": 0.11181640625,
1066
+ "learning_rate": 0.0001631772753111086,
1067
+ "loss": 0.0933,
1068
+ "step": 141
1069
+ },
1070
+ {
1071
+ "epoch": 0.8974916057673317,
1072
+ "grad_norm": 0.11376953125,
1073
+ "learning_rate": 0.00016265099998359866,
1074
+ "loss": 0.0991,
1075
+ "step": 142
1076
+ },
1077
+ {
1078
+ "epoch": 0.9038119691882284,
1079
+ "grad_norm": 0.10595703125,
1080
+ "learning_rate": 0.00016212185261841499,
1081
+ "loss": 0.0904,
1082
+ "step": 143
1083
+ },
1084
+ {
1085
+ "epoch": 0.9101323326091251,
1086
+ "grad_norm": 0.10693359375,
1087
+ "learning_rate": 0.00016158985747265108,
1088
+ "loss": 0.0975,
1089
+ "step": 144
1090
+ },
1091
+ {
1092
+ "epoch": 0.9101323326091251,
1093
+ "eval_loss": 0.10078423470258713,
1094
+ "eval_runtime": 52.712,
1095
+ "eval_samples_per_second": 20.223,
1096
+ "eval_steps_per_second": 20.223,
1097
+ "step": 144
1098
+ },
1099
+ {
1100
+ "epoch": 0.9164526960300218,
1101
+ "grad_norm": 0.10009765625,
1102
+ "learning_rate": 0.00016105503893394806,
1103
+ "loss": 0.0921,
1104
+ "step": 145
1105
+ },
1106
+ {
1107
+ "epoch": 0.9227730594509185,
1108
+ "grad_norm": 0.1025390625,
1109
+ "learning_rate": 0.00016051742151937655,
1110
+ "loss": 0.0927,
1111
+ "step": 146
1112
+ },
1113
+ {
1114
+ "epoch": 0.9290934228718152,
1115
+ "grad_norm": 0.10107421875,
1116
+ "learning_rate": 0.0001599770298743128,
1117
+ "loss": 0.0915,
1118
+ "step": 147
1119
+ },
1120
+ {
1121
+ "epoch": 0.9354137862927119,
1122
+ "grad_norm": 0.11279296875,
1123
+ "learning_rate": 0.000159433888771309,
1124
+ "loss": 0.1038,
1125
+ "step": 148
1126
+ },
1127
+ {
1128
+ "epoch": 0.9417341497136086,
1129
+ "grad_norm": 0.11962890625,
1130
+ "learning_rate": 0.00015888802310895742,
1131
+ "loss": 0.1063,
1132
+ "step": 149
1133
+ },
1134
+ {
1135
+ "epoch": 0.9480545131345053,
1136
+ "grad_norm": 0.10205078125,
1137
+ "learning_rate": 0.00015833945791074943,
1138
+ "loss": 0.0796,
1139
+ "step": 150
1140
+ },
1141
+ {
1142
+ "epoch": 0.954374876555402,
1143
+ "grad_norm": 0.10986328125,
1144
+ "learning_rate": 0.00015778821832392777,
1145
+ "loss": 0.0984,
1146
+ "step": 151
1147
+ },
1148
+ {
1149
+ "epoch": 0.9606952399762987,
1150
+ "grad_norm": 0.11865234375,
1151
+ "learning_rate": 0.0001572343296183344,
1152
+ "loss": 0.1029,
1153
+ "step": 152
1154
+ },
1155
+ {
1156
+ "epoch": 0.9670156033971954,
1157
+ "grad_norm": 0.10546875,
1158
+ "learning_rate": 0.00015667781718525157,
1159
+ "loss": 0.0903,
1160
+ "step": 153
1161
+ },
1162
+ {
1163
+ "epoch": 0.9733359668180921,
1164
+ "grad_norm": 0.10498046875,
1165
+ "learning_rate": 0.00015611870653623825,
1166
+ "loss": 0.0961,
1167
+ "step": 154
1168
+ },
1169
+ {
1170
+ "epoch": 0.9796563302389888,
1171
+ "grad_norm": 0.09423828125,
1172
+ "learning_rate": 0.00015555702330196023,
1173
+ "loss": 0.0752,
1174
+ "step": 155
1175
+ },
1176
+ {
1177
+ "epoch": 0.9859766936598855,
1178
+ "grad_norm": 0.111328125,
1179
+ "learning_rate": 0.0001549927932310155,
1180
+ "loss": 0.1046,
1181
+ "step": 156
1182
+ },
1183
+ {
1184
+ "epoch": 0.9922970570807822,
1185
+ "grad_norm": 0.11083984375,
1186
+ "learning_rate": 0.0001544260421887537,
1187
+ "loss": 0.0966,
1188
+ "step": 157
1189
+ },
1190
+ {
1191
+ "epoch": 0.9986174205016789,
1192
+ "grad_norm": 0.11474609375,
1193
+ "learning_rate": 0.00015385679615609042,
1194
+ "loss": 0.1116,
1195
+ "step": 158
1196
+ }
1197
+ ],
1198
+ "logging_steps": 1,
1199
+ "max_steps": 474,
1200
+ "num_input_tokens_seen": 0,
1201
+ "num_train_epochs": 3,
1202
+ "save_steps": 79,
1203
+ "stateful_callbacks": {
1204
+ "TrainerControl": {
1205
+ "args": {
1206
+ "should_epoch_stop": false,
1207
+ "should_evaluate": false,
1208
+ "should_log": false,
1209
+ "should_save": true,
1210
+ "should_training_stop": false
1211
+ },
1212
+ "attributes": {}
1213
+ }
1214
+ },
1215
+ "total_flos": 2.692701697867776e+17,
1216
+ "train_batch_size": 1,
1217
+ "trial_name": null,
1218
+ "trial_params": null
1219
+ }
checkpoint-158/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:136a7ee0a77597b848c5de059bd51390aca154d1a50fcf9952331e4f999461f1
3
+ size 6008
checkpoint-158/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-237/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2-7B-Instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-237/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2-7B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 128,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "gate_proj",
24
+ "k_proj",
25
+ "v_proj",
26
+ "up_proj",
27
+ "q_proj",
28
+ "down_proj",
29
+ "o_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-237/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1aaa85169dfacd78417caef0868aebfa21635ca797ce02dc960b7cbf32577a62
3
+ size 323014560
checkpoint-237/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
checkpoint-237/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-237/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ab8f3e83e5788ca8c3788a46149594128c442dfed201f824737f0551b787b86
3
+ size 1292086650
checkpoint-237/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2c35408c495c013a7caf092ec41afe6983d550f148f7020f9a079fcac428d9b
3
+ size 14244
checkpoint-237/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d6f64865f4f8d2e6acee33c20ad683fbbe2324af3239d94f64ade7a67aa8521
3
+ size 1064
checkpoint-237/special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|im_end|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
checkpoint-237/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-237/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|im_end|>",
37
+ "errors": "replace",
38
+ "model_max_length": 131072,
39
+ "pad_token": "<|endoftext|>",
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "Qwen2Tokenizer",
42
+ "unk_token": null
43
+ }
checkpoint-237/trainer_state.json ADDED
@@ -0,0 +1,1812 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.4979261307525182,
5
+ "eval_steps": 16,
6
+ "global_step": 237,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.006320363420896702,
13
+ "grad_norm": 1.03125,
14
+ "learning_rate": 2e-05,
15
+ "loss": 0.5558,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.006320363420896702,
20
+ "eval_loss": 0.5296231508255005,
21
+ "eval_runtime": 52.0012,
22
+ "eval_samples_per_second": 20.5,
23
+ "eval_steps_per_second": 20.5,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.012640726841793404,
28
+ "grad_norm": 0.96484375,
29
+ "learning_rate": 4e-05,
30
+ "loss": 0.5376,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.018961090262690106,
35
+ "grad_norm": 0.9609375,
36
+ "learning_rate": 6e-05,
37
+ "loss": 0.5124,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.025281453683586808,
42
+ "grad_norm": 0.71484375,
43
+ "learning_rate": 8e-05,
44
+ "loss": 0.4336,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.03160181710448351,
49
+ "grad_norm": 0.427734375,
50
+ "learning_rate": 0.0001,
51
+ "loss": 0.332,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.03792218052538021,
56
+ "grad_norm": 0.326171875,
57
+ "learning_rate": 0.00012,
58
+ "loss": 0.2481,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.04424254394627691,
63
+ "grad_norm": 0.34375,
64
+ "learning_rate": 0.00014,
65
+ "loss": 0.225,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.050562907367173615,
70
+ "grad_norm": 0.30078125,
71
+ "learning_rate": 0.00016,
72
+ "loss": 0.1996,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.05688327078807032,
77
+ "grad_norm": 0.298828125,
78
+ "learning_rate": 0.00018,
79
+ "loss": 0.1811,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.06320363420896702,
84
+ "grad_norm": 0.240234375,
85
+ "learning_rate": 0.0002,
86
+ "loss": 0.1933,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.06952399762986372,
91
+ "grad_norm": 0.267578125,
92
+ "learning_rate": 0.00019999770790755575,
93
+ "loss": 0.2048,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.07584436105076042,
98
+ "grad_norm": 0.2177734375,
99
+ "learning_rate": 0.00019999083173529673,
100
+ "loss": 0.1728,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.08216472447165712,
105
+ "grad_norm": 0.1748046875,
106
+ "learning_rate": 0.00019997937179843937,
107
+ "loss": 0.1804,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.08848508789255383,
112
+ "grad_norm": 0.1826171875,
113
+ "learning_rate": 0.0001999633286223284,
114
+ "loss": 0.1894,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.09480545131345053,
119
+ "grad_norm": 0.15234375,
120
+ "learning_rate": 0.00019994270294241266,
121
+ "loss": 0.1633,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.10112581473434723,
126
+ "grad_norm": 0.1455078125,
127
+ "learning_rate": 0.00019991749570421146,
128
+ "loss": 0.1574,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.10112581473434723,
133
+ "eval_loss": 0.16320638358592987,
134
+ "eval_runtime": 56.0359,
135
+ "eval_samples_per_second": 19.024,
136
+ "eval_steps_per_second": 19.024,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.10744617815524393,
141
+ "grad_norm": 0.1328125,
142
+ "learning_rate": 0.0001998877080632712,
143
+ "loss": 0.1589,
144
+ "step": 17
145
+ },
146
+ {
147
+ "epoch": 0.11376654157614063,
148
+ "grad_norm": 0.1650390625,
149
+ "learning_rate": 0.00019985334138511237,
150
+ "loss": 0.1718,
151
+ "step": 18
152
+ },
153
+ {
154
+ "epoch": 0.12008690499703734,
155
+ "grad_norm": 0.1455078125,
156
+ "learning_rate": 0.00019981439724516716,
157
+ "loss": 0.156,
158
+ "step": 19
159
+ },
160
+ {
161
+ "epoch": 0.12640726841793404,
162
+ "grad_norm": 0.162109375,
163
+ "learning_rate": 0.0001997708774287068,
164
+ "loss": 0.1781,
165
+ "step": 20
166
+ },
167
+ {
168
+ "epoch": 0.13272763183883074,
169
+ "grad_norm": 0.1416015625,
170
+ "learning_rate": 0.00019972278393076023,
171
+ "loss": 0.1347,
172
+ "step": 21
173
+ },
174
+ {
175
+ "epoch": 0.13904799525972744,
176
+ "grad_norm": 0.130859375,
177
+ "learning_rate": 0.0001996701189560223,
178
+ "loss": 0.1389,
179
+ "step": 22
180
+ },
181
+ {
182
+ "epoch": 0.14536835868062414,
183
+ "grad_norm": 0.138671875,
184
+ "learning_rate": 0.00019961288491875278,
185
+ "loss": 0.1418,
186
+ "step": 23
187
+ },
188
+ {
189
+ "epoch": 0.15168872210152085,
190
+ "grad_norm": 0.11279296875,
191
+ "learning_rate": 0.00019955108444266585,
192
+ "loss": 0.1269,
193
+ "step": 24
194
+ },
195
+ {
196
+ "epoch": 0.15800908552241755,
197
+ "grad_norm": 0.1435546875,
198
+ "learning_rate": 0.00019948472036080949,
199
+ "loss": 0.1659,
200
+ "step": 25
201
+ },
202
+ {
203
+ "epoch": 0.16432944894331425,
204
+ "grad_norm": 0.13671875,
205
+ "learning_rate": 0.00019941379571543596,
206
+ "loss": 0.124,
207
+ "step": 26
208
+ },
209
+ {
210
+ "epoch": 0.17064981236421095,
211
+ "grad_norm": 0.1396484375,
212
+ "learning_rate": 0.00019933831375786216,
213
+ "loss": 0.1423,
214
+ "step": 27
215
+ },
216
+ {
217
+ "epoch": 0.17697017578510765,
218
+ "grad_norm": 0.1494140625,
219
+ "learning_rate": 0.00019925827794832056,
220
+ "loss": 0.1394,
221
+ "step": 28
222
+ },
223
+ {
224
+ "epoch": 0.18329053920600435,
225
+ "grad_norm": 0.1279296875,
226
+ "learning_rate": 0.00019917369195580063,
227
+ "loss": 0.1168,
228
+ "step": 29
229
+ },
230
+ {
231
+ "epoch": 0.18961090262690106,
232
+ "grad_norm": 0.1435546875,
233
+ "learning_rate": 0.00019908455965788067,
234
+ "loss": 0.147,
235
+ "step": 30
236
+ },
237
+ {
238
+ "epoch": 0.19593126604779776,
239
+ "grad_norm": 0.1318359375,
240
+ "learning_rate": 0.00019899088514055004,
241
+ "loss": 0.13,
242
+ "step": 31
243
+ },
244
+ {
245
+ "epoch": 0.20225162946869446,
246
+ "grad_norm": 0.11865234375,
247
+ "learning_rate": 0.00019889267269802176,
248
+ "loss": 0.1279,
249
+ "step": 32
250
+ },
251
+ {
252
+ "epoch": 0.20225162946869446,
253
+ "eval_loss": 0.137903094291687,
254
+ "eval_runtime": 55.5398,
255
+ "eval_samples_per_second": 19.193,
256
+ "eval_steps_per_second": 19.193,
257
+ "step": 32
258
+ },
259
+ {
260
+ "epoch": 0.20857199288959116,
261
+ "grad_norm": 0.125,
262
+ "learning_rate": 0.00019878992683253582,
263
+ "loss": 0.123,
264
+ "step": 33
265
+ },
266
+ {
267
+ "epoch": 0.21489235631048786,
268
+ "grad_norm": 0.125,
269
+ "learning_rate": 0.00019868265225415265,
270
+ "loss": 0.1264,
271
+ "step": 34
272
+ },
273
+ {
274
+ "epoch": 0.22121271973138457,
275
+ "grad_norm": 0.1279296875,
276
+ "learning_rate": 0.00019857085388053723,
277
+ "loss": 0.1295,
278
+ "step": 35
279
+ },
280
+ {
281
+ "epoch": 0.22753308315228127,
282
+ "grad_norm": 0.138671875,
283
+ "learning_rate": 0.00019845453683673368,
284
+ "loss": 0.1448,
285
+ "step": 36
286
+ },
287
+ {
288
+ "epoch": 0.23385344657317797,
289
+ "grad_norm": 0.126953125,
290
+ "learning_rate": 0.00019833370645493047,
291
+ "loss": 0.1293,
292
+ "step": 37
293
+ },
294
+ {
295
+ "epoch": 0.24017380999407467,
296
+ "grad_norm": 0.130859375,
297
+ "learning_rate": 0.0001982083682742156,
298
+ "loss": 0.1387,
299
+ "step": 38
300
+ },
301
+ {
302
+ "epoch": 0.24649417341497137,
303
+ "grad_norm": 0.10888671875,
304
+ "learning_rate": 0.00019807852804032305,
305
+ "loss": 0.1027,
306
+ "step": 39
307
+ },
308
+ {
309
+ "epoch": 0.2528145368358681,
310
+ "grad_norm": 0.1240234375,
311
+ "learning_rate": 0.00019794419170536916,
312
+ "loss": 0.1166,
313
+ "step": 40
314
+ },
315
+ {
316
+ "epoch": 0.2591349002567648,
317
+ "grad_norm": 0.1337890625,
318
+ "learning_rate": 0.00019780536542758,
319
+ "loss": 0.1218,
320
+ "step": 41
321
+ },
322
+ {
323
+ "epoch": 0.2654552636776615,
324
+ "grad_norm": 0.11865234375,
325
+ "learning_rate": 0.00019766205557100868,
326
+ "loss": 0.1291,
327
+ "step": 42
328
+ },
329
+ {
330
+ "epoch": 0.2717756270985582,
331
+ "grad_norm": 0.138671875,
332
+ "learning_rate": 0.00019751426870524407,
333
+ "loss": 0.1409,
334
+ "step": 43
335
+ },
336
+ {
337
+ "epoch": 0.2780959905194549,
338
+ "grad_norm": 0.12109375,
339
+ "learning_rate": 0.00019736201160510931,
340
+ "loss": 0.1275,
341
+ "step": 44
342
+ },
343
+ {
344
+ "epoch": 0.2844163539403516,
345
+ "grad_norm": 0.125,
346
+ "learning_rate": 0.0001972052912503514,
347
+ "loss": 0.1319,
348
+ "step": 45
349
+ },
350
+ {
351
+ "epoch": 0.2907367173612483,
352
+ "grad_norm": 0.12158203125,
353
+ "learning_rate": 0.00019704411482532116,
354
+ "loss": 0.134,
355
+ "step": 46
356
+ },
357
+ {
358
+ "epoch": 0.297057080782145,
359
+ "grad_norm": 0.119140625,
360
+ "learning_rate": 0.00019687848971864389,
361
+ "loss": 0.1334,
362
+ "step": 47
363
+ },
364
+ {
365
+ "epoch": 0.3033774442030417,
366
+ "grad_norm": 0.119140625,
367
+ "learning_rate": 0.0001967084235228807,
368
+ "loss": 0.1166,
369
+ "step": 48
370
+ },
371
+ {
372
+ "epoch": 0.3033774442030417,
373
+ "eval_loss": 0.12646569311618805,
374
+ "eval_runtime": 55.7378,
375
+ "eval_samples_per_second": 19.125,
376
+ "eval_steps_per_second": 19.125,
377
+ "step": 48
378
+ },
379
+ {
380
+ "epoch": 0.3096978076239384,
381
+ "grad_norm": 0.12109375,
382
+ "learning_rate": 0.00019653392403418043,
383
+ "loss": 0.1242,
384
+ "step": 49
385
+ },
386
+ {
387
+ "epoch": 0.3160181710448351,
388
+ "grad_norm": 0.1201171875,
389
+ "learning_rate": 0.0001963549992519223,
390
+ "loss": 0.1309,
391
+ "step": 50
392
+ },
393
+ {
394
+ "epoch": 0.3223385344657318,
395
+ "grad_norm": 0.1044921875,
396
+ "learning_rate": 0.00019617165737834916,
397
+ "loss": 0.1041,
398
+ "step": 51
399
+ },
400
+ {
401
+ "epoch": 0.3286588978866285,
402
+ "grad_norm": 0.1318359375,
403
+ "learning_rate": 0.0001959839068181914,
404
+ "loss": 0.1219,
405
+ "step": 52
406
+ },
407
+ {
408
+ "epoch": 0.3349792613075252,
409
+ "grad_norm": 0.12109375,
410
+ "learning_rate": 0.00019579175617828187,
411
+ "loss": 0.1421,
412
+ "step": 53
413
+ },
414
+ {
415
+ "epoch": 0.3412996247284219,
416
+ "grad_norm": 0.11767578125,
417
+ "learning_rate": 0.00019559521426716118,
418
+ "loss": 0.1176,
419
+ "step": 54
420
+ },
421
+ {
422
+ "epoch": 0.3476199881493186,
423
+ "grad_norm": 0.119140625,
424
+ "learning_rate": 0.0001953942900946739,
425
+ "loss": 0.1206,
426
+ "step": 55
427
+ },
428
+ {
429
+ "epoch": 0.3539403515702153,
430
+ "grad_norm": 0.12158203125,
431
+ "learning_rate": 0.00019518899287155556,
432
+ "loss": 0.1174,
433
+ "step": 56
434
+ },
435
+ {
436
+ "epoch": 0.360260714991112,
437
+ "grad_norm": 0.1181640625,
438
+ "learning_rate": 0.0001949793320090105,
439
+ "loss": 0.1228,
440
+ "step": 57
441
+ },
442
+ {
443
+ "epoch": 0.3665810784120087,
444
+ "grad_norm": 0.13671875,
445
+ "learning_rate": 0.00019476531711828027,
446
+ "loss": 0.125,
447
+ "step": 58
448
+ },
449
+ {
450
+ "epoch": 0.3729014418329054,
451
+ "grad_norm": 0.11962890625,
452
+ "learning_rate": 0.0001945469580102031,
453
+ "loss": 0.1094,
454
+ "step": 59
455
+ },
456
+ {
457
+ "epoch": 0.3792218052538021,
458
+ "grad_norm": 0.10498046875,
459
+ "learning_rate": 0.0001943242646947643,
460
+ "loss": 0.0983,
461
+ "step": 60
462
+ },
463
+ {
464
+ "epoch": 0.3855421686746988,
465
+ "grad_norm": 0.1220703125,
466
+ "learning_rate": 0.00019409724738063714,
467
+ "loss": 0.1164,
468
+ "step": 61
469
+ },
470
+ {
471
+ "epoch": 0.3918625320955955,
472
+ "grad_norm": 0.11767578125,
473
+ "learning_rate": 0.00019386591647471506,
474
+ "loss": 0.1124,
475
+ "step": 62
476
+ },
477
+ {
478
+ "epoch": 0.3981828955164922,
479
+ "grad_norm": 0.11669921875,
480
+ "learning_rate": 0.00019363028258163447,
481
+ "loss": 0.1188,
482
+ "step": 63
483
+ },
484
+ {
485
+ "epoch": 0.4045032589373889,
486
+ "grad_norm": 0.12255859375,
487
+ "learning_rate": 0.00019339035650328869,
488
+ "loss": 0.1335,
489
+ "step": 64
490
+ },
491
+ {
492
+ "epoch": 0.4045032589373889,
493
+ "eval_loss": 0.11877521872520447,
494
+ "eval_runtime": 55.4677,
495
+ "eval_samples_per_second": 19.218,
496
+ "eval_steps_per_second": 19.218,
497
+ "step": 64
498
+ },
499
+ {
500
+ "epoch": 0.4108236223582856,
501
+ "grad_norm": 0.1279296875,
502
+ "learning_rate": 0.0001931461492383327,
503
+ "loss": 0.1447,
504
+ "step": 65
505
+ },
506
+ {
507
+ "epoch": 0.4171439857791823,
508
+ "grad_norm": 0.1044921875,
509
+ "learning_rate": 0.00019289767198167916,
510
+ "loss": 0.1004,
511
+ "step": 66
512
+ },
513
+ {
514
+ "epoch": 0.423464349200079,
515
+ "grad_norm": 0.1171875,
516
+ "learning_rate": 0.00019264493612398481,
517
+ "loss": 0.1228,
518
+ "step": 67
519
+ },
520
+ {
521
+ "epoch": 0.42978471262097573,
522
+ "grad_norm": 0.099609375,
523
+ "learning_rate": 0.0001923879532511287,
524
+ "loss": 0.0963,
525
+ "step": 68
526
+ },
527
+ {
528
+ "epoch": 0.43610507604187243,
529
+ "grad_norm": 0.1015625,
530
+ "learning_rate": 0.0001921267351436808,
531
+ "loss": 0.1025,
532
+ "step": 69
533
+ },
534
+ {
535
+ "epoch": 0.44242543946276913,
536
+ "grad_norm": 0.123046875,
537
+ "learning_rate": 0.0001918612937763622,
538
+ "loss": 0.124,
539
+ "step": 70
540
+ },
541
+ {
542
+ "epoch": 0.44874580288366583,
543
+ "grad_norm": 0.109375,
544
+ "learning_rate": 0.00019159164131749587,
545
+ "loss": 0.1203,
546
+ "step": 71
547
+ },
548
+ {
549
+ "epoch": 0.45506616630456254,
550
+ "grad_norm": 0.109375,
551
+ "learning_rate": 0.00019131779012844912,
552
+ "loss": 0.1052,
553
+ "step": 72
554
+ },
555
+ {
556
+ "epoch": 0.46138652972545924,
557
+ "grad_norm": 0.1162109375,
558
+ "learning_rate": 0.00019103975276306678,
559
+ "loss": 0.1181,
560
+ "step": 73
561
+ },
562
+ {
563
+ "epoch": 0.46770689314635594,
564
+ "grad_norm": 0.11181640625,
565
+ "learning_rate": 0.00019075754196709572,
566
+ "loss": 0.1065,
567
+ "step": 74
568
+ },
569
+ {
570
+ "epoch": 0.47402725656725264,
571
+ "grad_norm": 0.109375,
572
+ "learning_rate": 0.0001904711706776006,
573
+ "loss": 0.1075,
574
+ "step": 75
575
+ },
576
+ {
577
+ "epoch": 0.48034761998814934,
578
+ "grad_norm": 0.11865234375,
579
+ "learning_rate": 0.00019018065202237083,
580
+ "loss": 0.1182,
581
+ "step": 76
582
+ },
583
+ {
584
+ "epoch": 0.48666798340904605,
585
+ "grad_norm": 0.09814453125,
586
+ "learning_rate": 0.00018988599931931866,
587
+ "loss": 0.0913,
588
+ "step": 77
589
+ },
590
+ {
591
+ "epoch": 0.49298834682994275,
592
+ "grad_norm": 0.10791015625,
593
+ "learning_rate": 0.0001895872260758688,
594
+ "loss": 0.103,
595
+ "step": 78
596
+ },
597
+ {
598
+ "epoch": 0.49930871025083945,
599
+ "grad_norm": 0.111328125,
600
+ "learning_rate": 0.00018928434598833912,
601
+ "loss": 0.1106,
602
+ "step": 79
603
+ },
604
+ {
605
+ "epoch": 0.5056290736717362,
606
+ "grad_norm": 0.12451171875,
607
+ "learning_rate": 0.00018897737294131284,
608
+ "loss": 0.1145,
609
+ "step": 80
610
+ },
611
+ {
612
+ "epoch": 0.5056290736717362,
613
+ "eval_loss": 0.11342703551054001,
614
+ "eval_runtime": 55.8581,
615
+ "eval_samples_per_second": 19.084,
616
+ "eval_steps_per_second": 19.084,
617
+ "step": 80
618
+ },
619
+ {
620
+ "epoch": 0.5119494370926329,
621
+ "grad_norm": 0.109375,
622
+ "learning_rate": 0.00018866632100700197,
623
+ "loss": 0.0943,
624
+ "step": 81
625
+ },
626
+ {
627
+ "epoch": 0.5182698005135296,
628
+ "grad_norm": 0.130859375,
629
+ "learning_rate": 0.0001883512044446023,
630
+ "loss": 0.1409,
631
+ "step": 82
632
+ },
633
+ {
634
+ "epoch": 0.5245901639344263,
635
+ "grad_norm": 0.1259765625,
636
+ "learning_rate": 0.00018803203769963967,
637
+ "loss": 0.1364,
638
+ "step": 83
639
+ },
640
+ {
641
+ "epoch": 0.530910527355323,
642
+ "grad_norm": 0.10107421875,
643
+ "learning_rate": 0.0001877088354033077,
644
+ "loss": 0.0904,
645
+ "step": 84
646
+ },
647
+ {
648
+ "epoch": 0.5372308907762197,
649
+ "grad_norm": 0.10107421875,
650
+ "learning_rate": 0.0001873816123717973,
651
+ "loss": 0.0942,
652
+ "step": 85
653
+ },
654
+ {
655
+ "epoch": 0.5435512541971164,
656
+ "grad_norm": 0.11767578125,
657
+ "learning_rate": 0.0001870503836056172,
658
+ "loss": 0.095,
659
+ "step": 86
660
+ },
661
+ {
662
+ "epoch": 0.5498716176180131,
663
+ "grad_norm": 0.10986328125,
664
+ "learning_rate": 0.00018671516428890648,
665
+ "loss": 0.1061,
666
+ "step": 87
667
+ },
668
+ {
669
+ "epoch": 0.5561919810389098,
670
+ "grad_norm": 0.11962890625,
671
+ "learning_rate": 0.00018637596978873835,
672
+ "loss": 0.1209,
673
+ "step": 88
674
+ },
675
+ {
676
+ "epoch": 0.5625123444598065,
677
+ "grad_norm": 0.12451171875,
678
+ "learning_rate": 0.00018603281565441585,
679
+ "loss": 0.1268,
680
+ "step": 89
681
+ },
682
+ {
683
+ "epoch": 0.5688327078807032,
684
+ "grad_norm": 0.11376953125,
685
+ "learning_rate": 0.00018568571761675893,
686
+ "loss": 0.1034,
687
+ "step": 90
688
+ },
689
+ {
690
+ "epoch": 0.5751530713015999,
691
+ "grad_norm": 0.12060546875,
692
+ "learning_rate": 0.00018533469158738344,
693
+ "loss": 0.1265,
694
+ "step": 91
695
+ },
696
+ {
697
+ "epoch": 0.5814734347224966,
698
+ "grad_norm": 0.11328125,
699
+ "learning_rate": 0.0001849797536579715,
700
+ "loss": 0.1123,
701
+ "step": 92
702
+ },
703
+ {
704
+ "epoch": 0.5877937981433933,
705
+ "grad_norm": 0.10498046875,
706
+ "learning_rate": 0.00018462092009953408,
707
+ "loss": 0.1041,
708
+ "step": 93
709
+ },
710
+ {
711
+ "epoch": 0.59411416156429,
712
+ "grad_norm": 0.1171875,
713
+ "learning_rate": 0.0001842582073616649,
714
+ "loss": 0.1197,
715
+ "step": 94
716
+ },
717
+ {
718
+ "epoch": 0.6004345249851867,
719
+ "grad_norm": 0.0986328125,
720
+ "learning_rate": 0.00018389163207178656,
721
+ "loss": 0.0961,
722
+ "step": 95
723
+ },
724
+ {
725
+ "epoch": 0.6067548884060834,
726
+ "grad_norm": 0.1025390625,
727
+ "learning_rate": 0.000183521211034388,
728
+ "loss": 0.1036,
729
+ "step": 96
730
+ },
731
+ {
732
+ "epoch": 0.6067548884060834,
733
+ "eval_loss": 0.10819214582443237,
734
+ "eval_runtime": 56.0566,
735
+ "eval_samples_per_second": 19.017,
736
+ "eval_steps_per_second": 19.017,
737
+ "step": 96
738
+ },
739
+ {
740
+ "epoch": 0.6130752518269801,
741
+ "grad_norm": 0.1015625,
742
+ "learning_rate": 0.00018314696123025454,
743
+ "loss": 0.0953,
744
+ "step": 97
745
+ },
746
+ {
747
+ "epoch": 0.6193956152478768,
748
+ "grad_norm": 0.10791015625,
749
+ "learning_rate": 0.00018276889981568906,
750
+ "loss": 0.091,
751
+ "step": 98
752
+ },
753
+ {
754
+ "epoch": 0.6257159786687735,
755
+ "grad_norm": 0.1103515625,
756
+ "learning_rate": 0.00018238704412172586,
757
+ "loss": 0.0936,
758
+ "step": 99
759
+ },
760
+ {
761
+ "epoch": 0.6320363420896702,
762
+ "grad_norm": 0.11572265625,
763
+ "learning_rate": 0.0001820014116533359,
764
+ "loss": 0.111,
765
+ "step": 100
766
+ },
767
+ {
768
+ "epoch": 0.6383567055105669,
769
+ "grad_norm": 0.1259765625,
770
+ "learning_rate": 0.00018161202008862458,
771
+ "loss": 0.1232,
772
+ "step": 101
773
+ },
774
+ {
775
+ "epoch": 0.6446770689314636,
776
+ "grad_norm": 0.11474609375,
777
+ "learning_rate": 0.00018121888727802113,
778
+ "loss": 0.1072,
779
+ "step": 102
780
+ },
781
+ {
782
+ "epoch": 0.6509974323523603,
783
+ "grad_norm": 0.1103515625,
784
+ "learning_rate": 0.00018082203124346045,
785
+ "loss": 0.1081,
786
+ "step": 103
787
+ },
788
+ {
789
+ "epoch": 0.657317795773257,
790
+ "grad_norm": 0.125,
791
+ "learning_rate": 0.0001804214701775569,
792
+ "loss": 0.1155,
793
+ "step": 104
794
+ },
795
+ {
796
+ "epoch": 0.6636381591941537,
797
+ "grad_norm": 0.11669921875,
798
+ "learning_rate": 0.00018001722244277035,
799
+ "loss": 0.104,
800
+ "step": 105
801
+ },
802
+ {
803
+ "epoch": 0.6699585226150504,
804
+ "grad_norm": 0.10400390625,
805
+ "learning_rate": 0.00017960930657056438,
806
+ "loss": 0.0984,
807
+ "step": 106
808
+ },
809
+ {
810
+ "epoch": 0.6762788860359471,
811
+ "grad_norm": 0.10205078125,
812
+ "learning_rate": 0.00017919774126055673,
813
+ "loss": 0.0931,
814
+ "step": 107
815
+ },
816
+ {
817
+ "epoch": 0.6825992494568438,
818
+ "grad_norm": 0.1044921875,
819
+ "learning_rate": 0.00017878254537966216,
820
+ "loss": 0.1035,
821
+ "step": 108
822
+ },
823
+ {
824
+ "epoch": 0.6889196128777405,
825
+ "grad_norm": 0.1142578125,
826
+ "learning_rate": 0.0001783637379612275,
827
+ "loss": 0.1046,
828
+ "step": 109
829
+ },
830
+ {
831
+ "epoch": 0.6952399762986372,
832
+ "grad_norm": 0.11328125,
833
+ "learning_rate": 0.00017794133820415916,
834
+ "loss": 0.1166,
835
+ "step": 110
836
+ },
837
+ {
838
+ "epoch": 0.7015603397195339,
839
+ "grad_norm": 0.10302734375,
840
+ "learning_rate": 0.00017751536547204295,
841
+ "loss": 0.0937,
842
+ "step": 111
843
+ },
844
+ {
845
+ "epoch": 0.7078807031404306,
846
+ "grad_norm": 0.10302734375,
847
+ "learning_rate": 0.0001770858392922565,
848
+ "loss": 0.0937,
849
+ "step": 112
850
+ },
851
+ {
852
+ "epoch": 0.7078807031404306,
853
+ "eval_loss": 0.10633409768342972,
854
+ "eval_runtime": 54.3141,
855
+ "eval_samples_per_second": 19.627,
856
+ "eval_steps_per_second": 19.627,
857
+ "step": 112
858
+ },
859
+ {
860
+ "epoch": 0.7142010665613273,
861
+ "grad_norm": 0.107421875,
862
+ "learning_rate": 0.00017665277935507398,
863
+ "loss": 0.0908,
864
+ "step": 113
865
+ },
866
+ {
867
+ "epoch": 0.720521429982224,
868
+ "grad_norm": 0.1025390625,
869
+ "learning_rate": 0.00017621620551276366,
870
+ "loss": 0.0896,
871
+ "step": 114
872
+ },
873
+ {
874
+ "epoch": 0.7268417934031207,
875
+ "grad_norm": 0.0986328125,
876
+ "learning_rate": 0.00017577613777867762,
877
+ "loss": 0.0809,
878
+ "step": 115
879
+ },
880
+ {
881
+ "epoch": 0.7331621568240174,
882
+ "grad_norm": 0.10400390625,
883
+ "learning_rate": 0.00017533259632633442,
884
+ "loss": 0.0895,
885
+ "step": 116
886
+ },
887
+ {
888
+ "epoch": 0.7394825202449141,
889
+ "grad_norm": 0.1298828125,
890
+ "learning_rate": 0.00017488560148849427,
891
+ "loss": 0.1193,
892
+ "step": 117
893
+ },
894
+ {
895
+ "epoch": 0.7458028836658108,
896
+ "grad_norm": 0.10791015625,
897
+ "learning_rate": 0.00017443517375622704,
898
+ "loss": 0.1217,
899
+ "step": 118
900
+ },
901
+ {
902
+ "epoch": 0.7521232470867075,
903
+ "grad_norm": 0.115234375,
904
+ "learning_rate": 0.0001739813337779727,
905
+ "loss": 0.1096,
906
+ "step": 119
907
+ },
908
+ {
909
+ "epoch": 0.7584436105076042,
910
+ "grad_norm": 0.10302734375,
911
+ "learning_rate": 0.00017352410235859503,
912
+ "loss": 0.0907,
913
+ "step": 120
914
+ },
915
+ {
916
+ "epoch": 0.7647639739285009,
917
+ "grad_norm": 0.11328125,
918
+ "learning_rate": 0.0001730635004584276,
919
+ "loss": 0.1081,
920
+ "step": 121
921
+ },
922
+ {
923
+ "epoch": 0.7710843373493976,
924
+ "grad_norm": 0.09765625,
925
+ "learning_rate": 0.0001725995491923131,
926
+ "loss": 0.0847,
927
+ "step": 122
928
+ },
929
+ {
930
+ "epoch": 0.7774047007702943,
931
+ "grad_norm": 0.1259765625,
932
+ "learning_rate": 0.0001721322698286354,
933
+ "loss": 0.1134,
934
+ "step": 123
935
+ },
936
+ {
937
+ "epoch": 0.783725064191191,
938
+ "grad_norm": 0.115234375,
939
+ "learning_rate": 0.00017166168378834448,
940
+ "loss": 0.1065,
941
+ "step": 124
942
+ },
943
+ {
944
+ "epoch": 0.7900454276120877,
945
+ "grad_norm": 0.11279296875,
946
+ "learning_rate": 0.00017118781264397446,
947
+ "loss": 0.1078,
948
+ "step": 125
949
+ },
950
+ {
951
+ "epoch": 0.7963657910329844,
952
+ "grad_norm": 0.11767578125,
953
+ "learning_rate": 0.00017071067811865476,
954
+ "loss": 0.1064,
955
+ "step": 126
956
+ },
957
+ {
958
+ "epoch": 0.8026861544538811,
959
+ "grad_norm": 0.1064453125,
960
+ "learning_rate": 0.0001702303020851142,
961
+ "loss": 0.1031,
962
+ "step": 127
963
+ },
964
+ {
965
+ "epoch": 0.8090065178747778,
966
+ "grad_norm": 0.1123046875,
967
+ "learning_rate": 0.00016974670656467824,
968
+ "loss": 0.0934,
969
+ "step": 128
970
+ },
971
+ {
972
+ "epoch": 0.8090065178747778,
973
+ "eval_loss": 0.1029018759727478,
974
+ "eval_runtime": 54.0096,
975
+ "eval_samples_per_second": 19.737,
976
+ "eval_steps_per_second": 19.737,
977
+ "step": 128
978
+ },
979
+ {
980
+ "epoch": 0.8153268812956745,
981
+ "grad_norm": 0.11181640625,
982
+ "learning_rate": 0.0001692599137262597,
983
+ "loss": 0.1022,
984
+ "step": 129
985
+ },
986
+ {
987
+ "epoch": 0.8216472447165712,
988
+ "grad_norm": 0.1025390625,
989
+ "learning_rate": 0.00016876994588534234,
990
+ "loss": 0.0809,
991
+ "step": 130
992
+ },
993
+ {
994
+ "epoch": 0.827967608137468,
995
+ "grad_norm": 0.12353515625,
996
+ "learning_rate": 0.00016827682550295785,
997
+ "loss": 0.0976,
998
+ "step": 131
999
+ },
1000
+ {
1001
+ "epoch": 0.8342879715583646,
1002
+ "grad_norm": 0.11474609375,
1003
+ "learning_rate": 0.0001677805751846563,
1004
+ "loss": 0.1027,
1005
+ "step": 132
1006
+ },
1007
+ {
1008
+ "epoch": 0.8406083349792614,
1009
+ "grad_norm": 0.1142578125,
1010
+ "learning_rate": 0.00016728121767946977,
1011
+ "loss": 0.0912,
1012
+ "step": 133
1013
+ },
1014
+ {
1015
+ "epoch": 0.846928698400158,
1016
+ "grad_norm": 0.10498046875,
1017
+ "learning_rate": 0.00016677877587886956,
1018
+ "loss": 0.0913,
1019
+ "step": 134
1020
+ },
1021
+ {
1022
+ "epoch": 0.8532490618210548,
1023
+ "grad_norm": 0.11474609375,
1024
+ "learning_rate": 0.00016627327281571678,
1025
+ "loss": 0.1078,
1026
+ "step": 135
1027
+ },
1028
+ {
1029
+ "epoch": 0.8595694252419515,
1030
+ "grad_norm": 0.1435546875,
1031
+ "learning_rate": 0.00016576473166320644,
1032
+ "loss": 0.1356,
1033
+ "step": 136
1034
+ },
1035
+ {
1036
+ "epoch": 0.8658897886628482,
1037
+ "grad_norm": 0.10791015625,
1038
+ "learning_rate": 0.00016525317573380525,
1039
+ "loss": 0.1007,
1040
+ "step": 137
1041
+ },
1042
+ {
1043
+ "epoch": 0.8722101520837449,
1044
+ "grad_norm": 0.1044921875,
1045
+ "learning_rate": 0.00016473862847818277,
1046
+ "loss": 0.1005,
1047
+ "step": 138
1048
+ },
1049
+ {
1050
+ "epoch": 0.8785305155046416,
1051
+ "grad_norm": 0.10546875,
1052
+ "learning_rate": 0.00016422111348413657,
1053
+ "loss": 0.1016,
1054
+ "step": 139
1055
+ },
1056
+ {
1057
+ "epoch": 0.8848508789255383,
1058
+ "grad_norm": 0.1025390625,
1059
+ "learning_rate": 0.00016370065447551078,
1060
+ "loss": 0.0898,
1061
+ "step": 140
1062
+ },
1063
+ {
1064
+ "epoch": 0.891171242346435,
1065
+ "grad_norm": 0.11181640625,
1066
+ "learning_rate": 0.0001631772753111086,
1067
+ "loss": 0.0933,
1068
+ "step": 141
1069
+ },
1070
+ {
1071
+ "epoch": 0.8974916057673317,
1072
+ "grad_norm": 0.11376953125,
1073
+ "learning_rate": 0.00016265099998359866,
1074
+ "loss": 0.0991,
1075
+ "step": 142
1076
+ },
1077
+ {
1078
+ "epoch": 0.9038119691882284,
1079
+ "grad_norm": 0.10595703125,
1080
+ "learning_rate": 0.00016212185261841499,
1081
+ "loss": 0.0904,
1082
+ "step": 143
1083
+ },
1084
+ {
1085
+ "epoch": 0.9101323326091251,
1086
+ "grad_norm": 0.10693359375,
1087
+ "learning_rate": 0.00016158985747265108,
1088
+ "loss": 0.0975,
1089
+ "step": 144
1090
+ },
1091
+ {
1092
+ "epoch": 0.9101323326091251,
1093
+ "eval_loss": 0.10078423470258713,
1094
+ "eval_runtime": 52.712,
1095
+ "eval_samples_per_second": 20.223,
1096
+ "eval_steps_per_second": 20.223,
1097
+ "step": 144
1098
+ },
1099
+ {
1100
+ "epoch": 0.9164526960300218,
1101
+ "grad_norm": 0.10009765625,
1102
+ "learning_rate": 0.00016105503893394806,
1103
+ "loss": 0.0921,
1104
+ "step": 145
1105
+ },
1106
+ {
1107
+ "epoch": 0.9227730594509185,
1108
+ "grad_norm": 0.1025390625,
1109
+ "learning_rate": 0.00016051742151937655,
1110
+ "loss": 0.0927,
1111
+ "step": 146
1112
+ },
1113
+ {
1114
+ "epoch": 0.9290934228718152,
1115
+ "grad_norm": 0.10107421875,
1116
+ "learning_rate": 0.0001599770298743128,
1117
+ "loss": 0.0915,
1118
+ "step": 147
1119
+ },
1120
+ {
1121
+ "epoch": 0.9354137862927119,
1122
+ "grad_norm": 0.11279296875,
1123
+ "learning_rate": 0.000159433888771309,
1124
+ "loss": 0.1038,
1125
+ "step": 148
1126
+ },
1127
+ {
1128
+ "epoch": 0.9417341497136086,
1129
+ "grad_norm": 0.11962890625,
1130
+ "learning_rate": 0.00015888802310895742,
1131
+ "loss": 0.1063,
1132
+ "step": 149
1133
+ },
1134
+ {
1135
+ "epoch": 0.9480545131345053,
1136
+ "grad_norm": 0.10205078125,
1137
+ "learning_rate": 0.00015833945791074943,
1138
+ "loss": 0.0796,
1139
+ "step": 150
1140
+ },
1141
+ {
1142
+ "epoch": 0.954374876555402,
1143
+ "grad_norm": 0.10986328125,
1144
+ "learning_rate": 0.00015778821832392777,
1145
+ "loss": 0.0984,
1146
+ "step": 151
1147
+ },
1148
+ {
1149
+ "epoch": 0.9606952399762987,
1150
+ "grad_norm": 0.11865234375,
1151
+ "learning_rate": 0.0001572343296183344,
1152
+ "loss": 0.1029,
1153
+ "step": 152
1154
+ },
1155
+ {
1156
+ "epoch": 0.9670156033971954,
1157
+ "grad_norm": 0.10546875,
1158
+ "learning_rate": 0.00015667781718525157,
1159
+ "loss": 0.0903,
1160
+ "step": 153
1161
+ },
1162
+ {
1163
+ "epoch": 0.9733359668180921,
1164
+ "grad_norm": 0.10498046875,
1165
+ "learning_rate": 0.00015611870653623825,
1166
+ "loss": 0.0961,
1167
+ "step": 154
1168
+ },
1169
+ {
1170
+ "epoch": 0.9796563302389888,
1171
+ "grad_norm": 0.09423828125,
1172
+ "learning_rate": 0.00015555702330196023,
1173
+ "loss": 0.0752,
1174
+ "step": 155
1175
+ },
1176
+ {
1177
+ "epoch": 0.9859766936598855,
1178
+ "grad_norm": 0.111328125,
1179
+ "learning_rate": 0.0001549927932310155,
1180
+ "loss": 0.1046,
1181
+ "step": 156
1182
+ },
1183
+ {
1184
+ "epoch": 0.9922970570807822,
1185
+ "grad_norm": 0.11083984375,
1186
+ "learning_rate": 0.0001544260421887537,
1187
+ "loss": 0.0966,
1188
+ "step": 157
1189
+ },
1190
+ {
1191
+ "epoch": 0.9986174205016789,
1192
+ "grad_norm": 0.11474609375,
1193
+ "learning_rate": 0.00015385679615609042,
1194
+ "loss": 0.1116,
1195
+ "step": 158
1196
+ },
1197
+ {
1198
+ "epoch": 1.0049377839225755,
1199
+ "grad_norm": 0.1005859375,
1200
+ "learning_rate": 0.00015328508122831636,
1201
+ "loss": 0.0839,
1202
+ "step": 159
1203
+ },
1204
+ {
1205
+ "epoch": 1.0112581473434723,
1206
+ "grad_norm": 0.09912109375,
1207
+ "learning_rate": 0.00015271092361390077,
1208
+ "loss": 0.0657,
1209
+ "step": 160
1210
+ },
1211
+ {
1212
+ "epoch": 1.0112581473434723,
1213
+ "eval_loss": 0.0979941338300705,
1214
+ "eval_runtime": 52.8145,
1215
+ "eval_samples_per_second": 20.184,
1216
+ "eval_steps_per_second": 20.184,
1217
+ "step": 160
1218
+ },
1219
+ {
1220
+ "epoch": 1.017578510764369,
1221
+ "grad_norm": 0.10107421875,
1222
+ "learning_rate": 0.0001521343496332903,
1223
+ "loss": 0.0778,
1224
+ "step": 161
1225
+ },
1226
+ {
1227
+ "epoch": 1.0238988741852657,
1228
+ "grad_norm": 0.0869140625,
1229
+ "learning_rate": 0.00015155538571770218,
1230
+ "loss": 0.0658,
1231
+ "step": 162
1232
+ },
1233
+ {
1234
+ "epoch": 1.0302192376061623,
1235
+ "grad_norm": 0.099609375,
1236
+ "learning_rate": 0.00015097405840791276,
1237
+ "loss": 0.0716,
1238
+ "step": 163
1239
+ },
1240
+ {
1241
+ "epoch": 1.036539601027059,
1242
+ "grad_norm": 0.09228515625,
1243
+ "learning_rate": 0.00015039039435304078,
1244
+ "loss": 0.064,
1245
+ "step": 164
1246
+ },
1247
+ {
1248
+ "epoch": 1.0428599644479557,
1249
+ "grad_norm": 0.12255859375,
1250
+ "learning_rate": 0.00014980442030932558,
1251
+ "loss": 0.0944,
1252
+ "step": 165
1253
+ },
1254
+ {
1255
+ "epoch": 1.0491803278688525,
1256
+ "grad_norm": 0.1064453125,
1257
+ "learning_rate": 0.00014921616313890072,
1258
+ "loss": 0.0731,
1259
+ "step": 166
1260
+ },
1261
+ {
1262
+ "epoch": 1.055500691289749,
1263
+ "grad_norm": 0.1005859375,
1264
+ "learning_rate": 0.00014862564980856258,
1265
+ "loss": 0.0557,
1266
+ "step": 167
1267
+ },
1268
+ {
1269
+ "epoch": 1.061821054710646,
1270
+ "grad_norm": 0.13671875,
1271
+ "learning_rate": 0.00014803290738853395,
1272
+ "loss": 0.0874,
1273
+ "step": 168
1274
+ },
1275
+ {
1276
+ "epoch": 1.0681414181315425,
1277
+ "grad_norm": 0.11328125,
1278
+ "learning_rate": 0.00014743796305122331,
1279
+ "loss": 0.0696,
1280
+ "step": 169
1281
+ },
1282
+ {
1283
+ "epoch": 1.0744617815524393,
1284
+ "grad_norm": 0.111328125,
1285
+ "learning_rate": 0.00014684084406997903,
1286
+ "loss": 0.0681,
1287
+ "step": 170
1288
+ },
1289
+ {
1290
+ "epoch": 1.080782144973336,
1291
+ "grad_norm": 0.107421875,
1292
+ "learning_rate": 0.00014624157781783926,
1293
+ "loss": 0.0692,
1294
+ "step": 171
1295
+ },
1296
+ {
1297
+ "epoch": 1.0871025083942327,
1298
+ "grad_norm": 0.107421875,
1299
+ "learning_rate": 0.0001456401917662769,
1300
+ "loss": 0.0675,
1301
+ "step": 172
1302
+ },
1303
+ {
1304
+ "epoch": 1.0934228718151293,
1305
+ "grad_norm": 0.115234375,
1306
+ "learning_rate": 0.00014503671348394057,
1307
+ "loss": 0.0689,
1308
+ "step": 173
1309
+ },
1310
+ {
1311
+ "epoch": 1.0997432352360261,
1312
+ "grad_norm": 0.11572265625,
1313
+ "learning_rate": 0.00014443117063539038,
1314
+ "loss": 0.0824,
1315
+ "step": 174
1316
+ },
1317
+ {
1318
+ "epoch": 1.1060635986569227,
1319
+ "grad_norm": 0.11279296875,
1320
+ "learning_rate": 0.00014382359097983013,
1321
+ "loss": 0.0708,
1322
+ "step": 175
1323
+ },
1324
+ {
1325
+ "epoch": 1.1123839620778195,
1326
+ "grad_norm": 0.1064453125,
1327
+ "learning_rate": 0.00014321400236983457,
1328
+ "loss": 0.0671,
1329
+ "step": 176
1330
+ },
1331
+ {
1332
+ "epoch": 1.1123839620778195,
1333
+ "eval_loss": 0.09898500144481659,
1334
+ "eval_runtime": 52.0221,
1335
+ "eval_samples_per_second": 20.491,
1336
+ "eval_steps_per_second": 20.491,
1337
+ "step": 176
1338
+ },
1339
+ {
1340
+ "epoch": 1.1187043254987161,
1341
+ "grad_norm": 0.10400390625,
1342
+ "learning_rate": 0.00014260243275007265,
1343
+ "loss": 0.0725,
1344
+ "step": 177
1345
+ },
1346
+ {
1347
+ "epoch": 1.125024688919613,
1348
+ "grad_norm": 0.10888671875,
1349
+ "learning_rate": 0.00014198891015602646,
1350
+ "loss": 0.0704,
1351
+ "step": 178
1352
+ },
1353
+ {
1354
+ "epoch": 1.1313450523405095,
1355
+ "grad_norm": 0.10009765625,
1356
+ "learning_rate": 0.00014137346271270604,
1357
+ "loss": 0.0675,
1358
+ "step": 179
1359
+ },
1360
+ {
1361
+ "epoch": 1.1376654157614063,
1362
+ "grad_norm": 0.08984375,
1363
+ "learning_rate": 0.0001407561186333601,
1364
+ "loss": 0.0638,
1365
+ "step": 180
1366
+ },
1367
+ {
1368
+ "epoch": 1.143985779182303,
1369
+ "grad_norm": 0.1171875,
1370
+ "learning_rate": 0.00014013690621818262,
1371
+ "loss": 0.0792,
1372
+ "step": 181
1373
+ },
1374
+ {
1375
+ "epoch": 1.1503061426031997,
1376
+ "grad_norm": 0.09912109375,
1377
+ "learning_rate": 0.00013951585385301555,
1378
+ "loss": 0.0748,
1379
+ "step": 182
1380
+ },
1381
+ {
1382
+ "epoch": 1.1566265060240963,
1383
+ "grad_norm": 0.10986328125,
1384
+ "learning_rate": 0.0001388929900080476,
1385
+ "loss": 0.0641,
1386
+ "step": 183
1387
+ },
1388
+ {
1389
+ "epoch": 1.1629468694449931,
1390
+ "grad_norm": 0.1044921875,
1391
+ "learning_rate": 0.000138268343236509,
1392
+ "loss": 0.0655,
1393
+ "step": 184
1394
+ },
1395
+ {
1396
+ "epoch": 1.1692672328658897,
1397
+ "grad_norm": 0.109375,
1398
+ "learning_rate": 0.00013764194217336264,
1399
+ "loss": 0.0696,
1400
+ "step": 185
1401
+ },
1402
+ {
1403
+ "epoch": 1.1755875962867866,
1404
+ "grad_norm": 0.1103515625,
1405
+ "learning_rate": 0.00013701381553399145,
1406
+ "loss": 0.0648,
1407
+ "step": 186
1408
+ },
1409
+ {
1410
+ "epoch": 1.1819079597076831,
1411
+ "grad_norm": 0.107421875,
1412
+ "learning_rate": 0.00013638399211288188,
1413
+ "loss": 0.0705,
1414
+ "step": 187
1415
+ },
1416
+ {
1417
+ "epoch": 1.18822832312858,
1418
+ "grad_norm": 0.1201171875,
1419
+ "learning_rate": 0.000135752500782304,
1420
+ "loss": 0.074,
1421
+ "step": 188
1422
+ },
1423
+ {
1424
+ "epoch": 1.1945486865494765,
1425
+ "grad_norm": 0.10595703125,
1426
+ "learning_rate": 0.00013511937049098805,
1427
+ "loss": 0.0616,
1428
+ "step": 189
1429
+ },
1430
+ {
1431
+ "epoch": 1.2008690499703734,
1432
+ "grad_norm": 0.1025390625,
1433
+ "learning_rate": 0.00013448463026279704,
1434
+ "loss": 0.0688,
1435
+ "step": 190
1436
+ },
1437
+ {
1438
+ "epoch": 1.20718941339127,
1439
+ "grad_norm": 0.091796875,
1440
+ "learning_rate": 0.0001338483091953967,
1441
+ "loss": 0.0506,
1442
+ "step": 191
1443
+ },
1444
+ {
1445
+ "epoch": 1.2135097768121668,
1446
+ "grad_norm": 0.107421875,
1447
+ "learning_rate": 0.0001332104364589212,
1448
+ "loss": 0.0664,
1449
+ "step": 192
1450
+ },
1451
+ {
1452
+ "epoch": 1.2135097768121668,
1453
+ "eval_loss": 0.09864839166402817,
1454
+ "eval_runtime": 52.1317,
1455
+ "eval_samples_per_second": 20.448,
1456
+ "eval_steps_per_second": 20.448,
1457
+ "step": 192
1458
+ },
1459
+ {
1460
+ "epoch": 1.2198301402330634,
1461
+ "grad_norm": 0.11181640625,
1462
+ "learning_rate": 0.00013257104129463614,
1463
+ "loss": 0.0759,
1464
+ "step": 193
1465
+ },
1466
+ {
1467
+ "epoch": 1.2261505036539602,
1468
+ "grad_norm": 0.1083984375,
1469
+ "learning_rate": 0.000131930153013598,
1470
+ "loss": 0.0667,
1471
+ "step": 194
1472
+ },
1473
+ {
1474
+ "epoch": 1.2324708670748568,
1475
+ "grad_norm": 0.10498046875,
1476
+ "learning_rate": 0.00013128780099531056,
1477
+ "loss": 0.0751,
1478
+ "step": 195
1479
+ },
1480
+ {
1481
+ "epoch": 1.2387912304957536,
1482
+ "grad_norm": 0.10546875,
1483
+ "learning_rate": 0.00013064401468637792,
1484
+ "loss": 0.0703,
1485
+ "step": 196
1486
+ },
1487
+ {
1488
+ "epoch": 1.2451115939166502,
1489
+ "grad_norm": 0.1064453125,
1490
+ "learning_rate": 0.0001299988235991548,
1491
+ "loss": 0.0687,
1492
+ "step": 197
1493
+ },
1494
+ {
1495
+ "epoch": 1.251431957337547,
1496
+ "grad_norm": 0.11083984375,
1497
+ "learning_rate": 0.00012935225731039348,
1498
+ "loss": 0.073,
1499
+ "step": 198
1500
+ },
1501
+ {
1502
+ "epoch": 1.2577523207584436,
1503
+ "grad_norm": 0.11279296875,
1504
+ "learning_rate": 0.00012870434545988812,
1505
+ "loss": 0.0754,
1506
+ "step": 199
1507
+ },
1508
+ {
1509
+ "epoch": 1.2640726841793404,
1510
+ "grad_norm": 0.09375,
1511
+ "learning_rate": 0.00012805511774911584,
1512
+ "loss": 0.059,
1513
+ "step": 200
1514
+ },
1515
+ {
1516
+ "epoch": 1.270393047600237,
1517
+ "grad_norm": 0.0927734375,
1518
+ "learning_rate": 0.00012740460393987526,
1519
+ "loss": 0.0574,
1520
+ "step": 201
1521
+ },
1522
+ {
1523
+ "epoch": 1.2767134110211338,
1524
+ "grad_norm": 0.11572265625,
1525
+ "learning_rate": 0.00012675283385292212,
1526
+ "loss": 0.077,
1527
+ "step": 202
1528
+ },
1529
+ {
1530
+ "epoch": 1.2830337744420304,
1531
+ "grad_norm": 0.10205078125,
1532
+ "learning_rate": 0.0001260998373666022,
1533
+ "loss": 0.0632,
1534
+ "step": 203
1535
+ },
1536
+ {
1537
+ "epoch": 1.2893541378629272,
1538
+ "grad_norm": 0.10302734375,
1539
+ "learning_rate": 0.00012544564441548182,
1540
+ "loss": 0.0665,
1541
+ "step": 204
1542
+ },
1543
+ {
1544
+ "epoch": 1.2956745012838238,
1545
+ "grad_norm": 0.09326171875,
1546
+ "learning_rate": 0.00012479028498897535,
1547
+ "loss": 0.058,
1548
+ "step": 205
1549
+ },
1550
+ {
1551
+ "epoch": 1.3019948647047206,
1552
+ "grad_norm": 0.115234375,
1553
+ "learning_rate": 0.00012413378912997058,
1554
+ "loss": 0.0652,
1555
+ "step": 206
1556
+ },
1557
+ {
1558
+ "epoch": 1.3083152281256172,
1559
+ "grad_norm": 0.08544921875,
1560
+ "learning_rate": 0.0001234761869334515,
1561
+ "loss": 0.0526,
1562
+ "step": 207
1563
+ },
1564
+ {
1565
+ "epoch": 1.314635591546514,
1566
+ "grad_norm": 0.10595703125,
1567
+ "learning_rate": 0.0001228175085451186,
1568
+ "loss": 0.0735,
1569
+ "step": 208
1570
+ },
1571
+ {
1572
+ "epoch": 1.314635591546514,
1573
+ "eval_loss": 0.09652113914489746,
1574
+ "eval_runtime": 51.6293,
1575
+ "eval_samples_per_second": 20.647,
1576
+ "eval_steps_per_second": 20.647,
1577
+ "step": 208
1578
+ },
1579
+ {
1580
+ "epoch": 1.3209559549674106,
1581
+ "grad_norm": 0.1259765625,
1582
+ "learning_rate": 0.00012215778416000707,
1583
+ "loss": 0.0833,
1584
+ "step": 209
1585
+ },
1586
+ {
1587
+ "epoch": 1.3272763183883074,
1588
+ "grad_norm": 0.1103515625,
1589
+ "learning_rate": 0.00012149704402110243,
1590
+ "loss": 0.068,
1591
+ "step": 210
1592
+ },
1593
+ {
1594
+ "epoch": 1.333596681809204,
1595
+ "grad_norm": 0.10107421875,
1596
+ "learning_rate": 0.00012083531841795425,
1597
+ "loss": 0.0639,
1598
+ "step": 211
1599
+ },
1600
+ {
1601
+ "epoch": 1.3399170452301008,
1602
+ "grad_norm": 0.10302734375,
1603
+ "learning_rate": 0.00012017263768528775,
1604
+ "loss": 0.0671,
1605
+ "step": 212
1606
+ },
1607
+ {
1608
+ "epoch": 1.3462374086509974,
1609
+ "grad_norm": 0.10595703125,
1610
+ "learning_rate": 0.00011950903220161285,
1611
+ "loss": 0.0655,
1612
+ "step": 213
1613
+ },
1614
+ {
1615
+ "epoch": 1.3525577720718942,
1616
+ "grad_norm": 0.10498046875,
1617
+ "learning_rate": 0.00011884453238783185,
1618
+ "loss": 0.0741,
1619
+ "step": 214
1620
+ },
1621
+ {
1622
+ "epoch": 1.3588781354927908,
1623
+ "grad_norm": 0.09619140625,
1624
+ "learning_rate": 0.00011817916870584482,
1625
+ "loss": 0.0609,
1626
+ "step": 215
1627
+ },
1628
+ {
1629
+ "epoch": 1.3651984989136876,
1630
+ "grad_norm": 0.10546875,
1631
+ "learning_rate": 0.00011751297165715309,
1632
+ "loss": 0.074,
1633
+ "step": 216
1634
+ },
1635
+ {
1636
+ "epoch": 1.3715188623345842,
1637
+ "grad_norm": 0.12158203125,
1638
+ "learning_rate": 0.00011684597178146115,
1639
+ "loss": 0.0724,
1640
+ "step": 217
1641
+ },
1642
+ {
1643
+ "epoch": 1.377839225755481,
1644
+ "grad_norm": 0.1044921875,
1645
+ "learning_rate": 0.0001161781996552765,
1646
+ "loss": 0.0649,
1647
+ "step": 218
1648
+ },
1649
+ {
1650
+ "epoch": 1.3841595891763776,
1651
+ "grad_norm": 0.1376953125,
1652
+ "learning_rate": 0.00011550968589050799,
1653
+ "loss": 0.0729,
1654
+ "step": 219
1655
+ },
1656
+ {
1657
+ "epoch": 1.3904799525972744,
1658
+ "grad_norm": 0.1005859375,
1659
+ "learning_rate": 0.00011484046113306262,
1660
+ "loss": 0.0555,
1661
+ "step": 220
1662
+ },
1663
+ {
1664
+ "epoch": 1.396800316018171,
1665
+ "grad_norm": 0.12060546875,
1666
+ "learning_rate": 0.0001141705560614406,
1667
+ "loss": 0.0804,
1668
+ "step": 221
1669
+ },
1670
+ {
1671
+ "epoch": 1.4031206794390678,
1672
+ "grad_norm": 0.11181640625,
1673
+ "learning_rate": 0.00011350000138532902,
1674
+ "loss": 0.0694,
1675
+ "step": 222
1676
+ },
1677
+ {
1678
+ "epoch": 1.4094410428599644,
1679
+ "grad_norm": 0.1162109375,
1680
+ "learning_rate": 0.00011282882784419398,
1681
+ "loss": 0.0784,
1682
+ "step": 223
1683
+ },
1684
+ {
1685
+ "epoch": 1.4157614062808612,
1686
+ "grad_norm": 0.11181640625,
1687
+ "learning_rate": 0.00011215706620587149,
1688
+ "loss": 0.0694,
1689
+ "step": 224
1690
+ },
1691
+ {
1692
+ "epoch": 1.4157614062808612,
1693
+ "eval_loss": 0.09438645094633102,
1694
+ "eval_runtime": 52.0469,
1695
+ "eval_samples_per_second": 20.482,
1696
+ "eval_steps_per_second": 20.482,
1697
+ "step": 224
1698
+ },
1699
+ {
1700
+ "epoch": 1.4220817697017578,
1701
+ "grad_norm": 0.10888671875,
1702
+ "learning_rate": 0.00011148474726515716,
1703
+ "loss": 0.0687,
1704
+ "step": 225
1705
+ },
1706
+ {
1707
+ "epoch": 1.4284021331226546,
1708
+ "grad_norm": 0.1181640625,
1709
+ "learning_rate": 0.00011081190184239419,
1710
+ "loss": 0.0644,
1711
+ "step": 226
1712
+ },
1713
+ {
1714
+ "epoch": 1.4347224965435512,
1715
+ "grad_norm": 0.11474609375,
1716
+ "learning_rate": 0.0001101385607820608,
1717
+ "loss": 0.0791,
1718
+ "step": 227
1719
+ },
1720
+ {
1721
+ "epoch": 1.441042859964448,
1722
+ "grad_norm": 0.103515625,
1723
+ "learning_rate": 0.0001094647549513561,
1724
+ "loss": 0.0667,
1725
+ "step": 228
1726
+ },
1727
+ {
1728
+ "epoch": 1.4473632233853446,
1729
+ "grad_norm": 0.109375,
1730
+ "learning_rate": 0.00010879051523878522,
1731
+ "loss": 0.0662,
1732
+ "step": 229
1733
+ },
1734
+ {
1735
+ "epoch": 1.4536835868062414,
1736
+ "grad_norm": 0.11474609375,
1737
+ "learning_rate": 0.00010811587255274313,
1738
+ "loss": 0.0726,
1739
+ "step": 230
1740
+ },
1741
+ {
1742
+ "epoch": 1.460003950227138,
1743
+ "grad_norm": 0.10400390625,
1744
+ "learning_rate": 0.00010744085782009792,
1745
+ "loss": 0.0639,
1746
+ "step": 231
1747
+ },
1748
+ {
1749
+ "epoch": 1.4663243136480348,
1750
+ "grad_norm": 0.1181640625,
1751
+ "learning_rate": 0.00010676550198477293,
1752
+ "loss": 0.0728,
1753
+ "step": 232
1754
+ },
1755
+ {
1756
+ "epoch": 1.4726446770689314,
1757
+ "grad_norm": 0.11669921875,
1758
+ "learning_rate": 0.00010608983600632831,
1759
+ "loss": 0.0784,
1760
+ "step": 233
1761
+ },
1762
+ {
1763
+ "epoch": 1.4789650404898282,
1764
+ "grad_norm": 0.103515625,
1765
+ "learning_rate": 0.00010541389085854176,
1766
+ "loss": 0.0635,
1767
+ "step": 234
1768
+ },
1769
+ {
1770
+ "epoch": 1.4852854039107248,
1771
+ "grad_norm": 0.10302734375,
1772
+ "learning_rate": 0.00010473769752798859,
1773
+ "loss": 0.0613,
1774
+ "step": 235
1775
+ },
1776
+ {
1777
+ "epoch": 1.4916057673316216,
1778
+ "grad_norm": 0.107421875,
1779
+ "learning_rate": 0.00010406128701262128,
1780
+ "loss": 0.0712,
1781
+ "step": 236
1782
+ },
1783
+ {
1784
+ "epoch": 1.4979261307525182,
1785
+ "grad_norm": 0.111328125,
1786
+ "learning_rate": 0.00010338469032034845,
1787
+ "loss": 0.069,
1788
+ "step": 237
1789
+ }
1790
+ ],
1791
+ "logging_steps": 1,
1792
+ "max_steps": 474,
1793
+ "num_input_tokens_seen": 0,
1794
+ "num_train_epochs": 3,
1795
+ "save_steps": 79,
1796
+ "stateful_callbacks": {
1797
+ "TrainerControl": {
1798
+ "args": {
1799
+ "should_epoch_stop": false,
1800
+ "should_evaluate": false,
1801
+ "should_log": false,
1802
+ "should_save": true,
1803
+ "should_training_stop": false
1804
+ },
1805
+ "attributes": {}
1806
+ }
1807
+ },
1808
+ "total_flos": 4.037608441105613e+17,
1809
+ "train_batch_size": 1,
1810
+ "trial_name": null,
1811
+ "trial_params": null
1812
+ }
checkpoint-237/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:136a7ee0a77597b848c5de059bd51390aca154d1a50fcf9952331e4f999461f1
3
+ size 6008
checkpoint-237/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-316/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2-7B-Instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-316/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2-7B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 128,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "gate_proj",
24
+ "k_proj",
25
+ "v_proj",
26
+ "up_proj",
27
+ "q_proj",
28
+ "down_proj",
29
+ "o_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-316/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3fd71eb57aa35460b6d5b15b5baa6faca633c4bf20ebd63784d201f0bf1b8b49
3
+ size 323014560
checkpoint-316/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
checkpoint-316/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-316/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5089891a294c260c6d30acb0909f5e6d201072380735e5a6712e0f3d43bff06e
3
+ size 1292087034
checkpoint-316/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:622094c4d9d3e0dcca264cf635917a029aaf1ab2274aea8d25b2645489e66a74
3
+ size 14244
checkpoint-316/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd35bbbc482695714080b987bcad8581a7efbafe4cf0eabf27cd9da275d5e902
3
+ size 1064
checkpoint-316/special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|im_end|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
checkpoint-316/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-316/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|im_end|>",
37
+ "errors": "replace",
38
+ "model_max_length": 131072,
39
+ "pad_token": "<|endoftext|>",
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "Qwen2Tokenizer",
42
+ "unk_token": null
43
+ }
checkpoint-316/trainer_state.json ADDED
@@ -0,0 +1,2405 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.9972348410033578,
5
+ "eval_steps": 16,
6
+ "global_step": 316,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.006320363420896702,
13
+ "grad_norm": 1.03125,
14
+ "learning_rate": 2e-05,
15
+ "loss": 0.5558,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.006320363420896702,
20
+ "eval_loss": 0.5296231508255005,
21
+ "eval_runtime": 52.0012,
22
+ "eval_samples_per_second": 20.5,
23
+ "eval_steps_per_second": 20.5,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.012640726841793404,
28
+ "grad_norm": 0.96484375,
29
+ "learning_rate": 4e-05,
30
+ "loss": 0.5376,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.018961090262690106,
35
+ "grad_norm": 0.9609375,
36
+ "learning_rate": 6e-05,
37
+ "loss": 0.5124,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.025281453683586808,
42
+ "grad_norm": 0.71484375,
43
+ "learning_rate": 8e-05,
44
+ "loss": 0.4336,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.03160181710448351,
49
+ "grad_norm": 0.427734375,
50
+ "learning_rate": 0.0001,
51
+ "loss": 0.332,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.03792218052538021,
56
+ "grad_norm": 0.326171875,
57
+ "learning_rate": 0.00012,
58
+ "loss": 0.2481,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.04424254394627691,
63
+ "grad_norm": 0.34375,
64
+ "learning_rate": 0.00014,
65
+ "loss": 0.225,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.050562907367173615,
70
+ "grad_norm": 0.30078125,
71
+ "learning_rate": 0.00016,
72
+ "loss": 0.1996,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.05688327078807032,
77
+ "grad_norm": 0.298828125,
78
+ "learning_rate": 0.00018,
79
+ "loss": 0.1811,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.06320363420896702,
84
+ "grad_norm": 0.240234375,
85
+ "learning_rate": 0.0002,
86
+ "loss": 0.1933,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.06952399762986372,
91
+ "grad_norm": 0.267578125,
92
+ "learning_rate": 0.00019999770790755575,
93
+ "loss": 0.2048,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.07584436105076042,
98
+ "grad_norm": 0.2177734375,
99
+ "learning_rate": 0.00019999083173529673,
100
+ "loss": 0.1728,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.08216472447165712,
105
+ "grad_norm": 0.1748046875,
106
+ "learning_rate": 0.00019997937179843937,
107
+ "loss": 0.1804,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.08848508789255383,
112
+ "grad_norm": 0.1826171875,
113
+ "learning_rate": 0.0001999633286223284,
114
+ "loss": 0.1894,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.09480545131345053,
119
+ "grad_norm": 0.15234375,
120
+ "learning_rate": 0.00019994270294241266,
121
+ "loss": 0.1633,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.10112581473434723,
126
+ "grad_norm": 0.1455078125,
127
+ "learning_rate": 0.00019991749570421146,
128
+ "loss": 0.1574,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.10112581473434723,
133
+ "eval_loss": 0.16320638358592987,
134
+ "eval_runtime": 56.0359,
135
+ "eval_samples_per_second": 19.024,
136
+ "eval_steps_per_second": 19.024,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.10744617815524393,
141
+ "grad_norm": 0.1328125,
142
+ "learning_rate": 0.0001998877080632712,
143
+ "loss": 0.1589,
144
+ "step": 17
145
+ },
146
+ {
147
+ "epoch": 0.11376654157614063,
148
+ "grad_norm": 0.1650390625,
149
+ "learning_rate": 0.00019985334138511237,
150
+ "loss": 0.1718,
151
+ "step": 18
152
+ },
153
+ {
154
+ "epoch": 0.12008690499703734,
155
+ "grad_norm": 0.1455078125,
156
+ "learning_rate": 0.00019981439724516716,
157
+ "loss": 0.156,
158
+ "step": 19
159
+ },
160
+ {
161
+ "epoch": 0.12640726841793404,
162
+ "grad_norm": 0.162109375,
163
+ "learning_rate": 0.0001997708774287068,
164
+ "loss": 0.1781,
165
+ "step": 20
166
+ },
167
+ {
168
+ "epoch": 0.13272763183883074,
169
+ "grad_norm": 0.1416015625,
170
+ "learning_rate": 0.00019972278393076023,
171
+ "loss": 0.1347,
172
+ "step": 21
173
+ },
174
+ {
175
+ "epoch": 0.13904799525972744,
176
+ "grad_norm": 0.130859375,
177
+ "learning_rate": 0.0001996701189560223,
178
+ "loss": 0.1389,
179
+ "step": 22
180
+ },
181
+ {
182
+ "epoch": 0.14536835868062414,
183
+ "grad_norm": 0.138671875,
184
+ "learning_rate": 0.00019961288491875278,
185
+ "loss": 0.1418,
186
+ "step": 23
187
+ },
188
+ {
189
+ "epoch": 0.15168872210152085,
190
+ "grad_norm": 0.11279296875,
191
+ "learning_rate": 0.00019955108444266585,
192
+ "loss": 0.1269,
193
+ "step": 24
194
+ },
195
+ {
196
+ "epoch": 0.15800908552241755,
197
+ "grad_norm": 0.1435546875,
198
+ "learning_rate": 0.00019948472036080949,
199
+ "loss": 0.1659,
200
+ "step": 25
201
+ },
202
+ {
203
+ "epoch": 0.16432944894331425,
204
+ "grad_norm": 0.13671875,
205
+ "learning_rate": 0.00019941379571543596,
206
+ "loss": 0.124,
207
+ "step": 26
208
+ },
209
+ {
210
+ "epoch": 0.17064981236421095,
211
+ "grad_norm": 0.1396484375,
212
+ "learning_rate": 0.00019933831375786216,
213
+ "loss": 0.1423,
214
+ "step": 27
215
+ },
216
+ {
217
+ "epoch": 0.17697017578510765,
218
+ "grad_norm": 0.1494140625,
219
+ "learning_rate": 0.00019925827794832056,
220
+ "loss": 0.1394,
221
+ "step": 28
222
+ },
223
+ {
224
+ "epoch": 0.18329053920600435,
225
+ "grad_norm": 0.1279296875,
226
+ "learning_rate": 0.00019917369195580063,
227
+ "loss": 0.1168,
228
+ "step": 29
229
+ },
230
+ {
231
+ "epoch": 0.18961090262690106,
232
+ "grad_norm": 0.1435546875,
233
+ "learning_rate": 0.00019908455965788067,
234
+ "loss": 0.147,
235
+ "step": 30
236
+ },
237
+ {
238
+ "epoch": 0.19593126604779776,
239
+ "grad_norm": 0.1318359375,
240
+ "learning_rate": 0.00019899088514055004,
241
+ "loss": 0.13,
242
+ "step": 31
243
+ },
244
+ {
245
+ "epoch": 0.20225162946869446,
246
+ "grad_norm": 0.11865234375,
247
+ "learning_rate": 0.00019889267269802176,
248
+ "loss": 0.1279,
249
+ "step": 32
250
+ },
251
+ {
252
+ "epoch": 0.20225162946869446,
253
+ "eval_loss": 0.137903094291687,
254
+ "eval_runtime": 55.5398,
255
+ "eval_samples_per_second": 19.193,
256
+ "eval_steps_per_second": 19.193,
257
+ "step": 32
258
+ },
259
+ {
260
+ "epoch": 0.20857199288959116,
261
+ "grad_norm": 0.125,
262
+ "learning_rate": 0.00019878992683253582,
263
+ "loss": 0.123,
264
+ "step": 33
265
+ },
266
+ {
267
+ "epoch": 0.21489235631048786,
268
+ "grad_norm": 0.125,
269
+ "learning_rate": 0.00019868265225415265,
270
+ "loss": 0.1264,
271
+ "step": 34
272
+ },
273
+ {
274
+ "epoch": 0.22121271973138457,
275
+ "grad_norm": 0.1279296875,
276
+ "learning_rate": 0.00019857085388053723,
277
+ "loss": 0.1295,
278
+ "step": 35
279
+ },
280
+ {
281
+ "epoch": 0.22753308315228127,
282
+ "grad_norm": 0.138671875,
283
+ "learning_rate": 0.00019845453683673368,
284
+ "loss": 0.1448,
285
+ "step": 36
286
+ },
287
+ {
288
+ "epoch": 0.23385344657317797,
289
+ "grad_norm": 0.126953125,
290
+ "learning_rate": 0.00019833370645493047,
291
+ "loss": 0.1293,
292
+ "step": 37
293
+ },
294
+ {
295
+ "epoch": 0.24017380999407467,
296
+ "grad_norm": 0.130859375,
297
+ "learning_rate": 0.0001982083682742156,
298
+ "loss": 0.1387,
299
+ "step": 38
300
+ },
301
+ {
302
+ "epoch": 0.24649417341497137,
303
+ "grad_norm": 0.10888671875,
304
+ "learning_rate": 0.00019807852804032305,
305
+ "loss": 0.1027,
306
+ "step": 39
307
+ },
308
+ {
309
+ "epoch": 0.2528145368358681,
310
+ "grad_norm": 0.1240234375,
311
+ "learning_rate": 0.00019794419170536916,
312
+ "loss": 0.1166,
313
+ "step": 40
314
+ },
315
+ {
316
+ "epoch": 0.2591349002567648,
317
+ "grad_norm": 0.1337890625,
318
+ "learning_rate": 0.00019780536542758,
319
+ "loss": 0.1218,
320
+ "step": 41
321
+ },
322
+ {
323
+ "epoch": 0.2654552636776615,
324
+ "grad_norm": 0.11865234375,
325
+ "learning_rate": 0.00019766205557100868,
326
+ "loss": 0.1291,
327
+ "step": 42
328
+ },
329
+ {
330
+ "epoch": 0.2717756270985582,
331
+ "grad_norm": 0.138671875,
332
+ "learning_rate": 0.00019751426870524407,
333
+ "loss": 0.1409,
334
+ "step": 43
335
+ },
336
+ {
337
+ "epoch": 0.2780959905194549,
338
+ "grad_norm": 0.12109375,
339
+ "learning_rate": 0.00019736201160510931,
340
+ "loss": 0.1275,
341
+ "step": 44
342
+ },
343
+ {
344
+ "epoch": 0.2844163539403516,
345
+ "grad_norm": 0.125,
346
+ "learning_rate": 0.0001972052912503514,
347
+ "loss": 0.1319,
348
+ "step": 45
349
+ },
350
+ {
351
+ "epoch": 0.2907367173612483,
352
+ "grad_norm": 0.12158203125,
353
+ "learning_rate": 0.00019704411482532116,
354
+ "loss": 0.134,
355
+ "step": 46
356
+ },
357
+ {
358
+ "epoch": 0.297057080782145,
359
+ "grad_norm": 0.119140625,
360
+ "learning_rate": 0.00019687848971864389,
361
+ "loss": 0.1334,
362
+ "step": 47
363
+ },
364
+ {
365
+ "epoch": 0.3033774442030417,
366
+ "grad_norm": 0.119140625,
367
+ "learning_rate": 0.0001967084235228807,
368
+ "loss": 0.1166,
369
+ "step": 48
370
+ },
371
+ {
372
+ "epoch": 0.3033774442030417,
373
+ "eval_loss": 0.12646569311618805,
374
+ "eval_runtime": 55.7378,
375
+ "eval_samples_per_second": 19.125,
376
+ "eval_steps_per_second": 19.125,
377
+ "step": 48
378
+ },
379
+ {
380
+ "epoch": 0.3096978076239384,
381
+ "grad_norm": 0.12109375,
382
+ "learning_rate": 0.00019653392403418043,
383
+ "loss": 0.1242,
384
+ "step": 49
385
+ },
386
+ {
387
+ "epoch": 0.3160181710448351,
388
+ "grad_norm": 0.1201171875,
389
+ "learning_rate": 0.0001963549992519223,
390
+ "loss": 0.1309,
391
+ "step": 50
392
+ },
393
+ {
394
+ "epoch": 0.3223385344657318,
395
+ "grad_norm": 0.1044921875,
396
+ "learning_rate": 0.00019617165737834916,
397
+ "loss": 0.1041,
398
+ "step": 51
399
+ },
400
+ {
401
+ "epoch": 0.3286588978866285,
402
+ "grad_norm": 0.1318359375,
403
+ "learning_rate": 0.0001959839068181914,
404
+ "loss": 0.1219,
405
+ "step": 52
406
+ },
407
+ {
408
+ "epoch": 0.3349792613075252,
409
+ "grad_norm": 0.12109375,
410
+ "learning_rate": 0.00019579175617828187,
411
+ "loss": 0.1421,
412
+ "step": 53
413
+ },
414
+ {
415
+ "epoch": 0.3412996247284219,
416
+ "grad_norm": 0.11767578125,
417
+ "learning_rate": 0.00019559521426716118,
418
+ "loss": 0.1176,
419
+ "step": 54
420
+ },
421
+ {
422
+ "epoch": 0.3476199881493186,
423
+ "grad_norm": 0.119140625,
424
+ "learning_rate": 0.0001953942900946739,
425
+ "loss": 0.1206,
426
+ "step": 55
427
+ },
428
+ {
429
+ "epoch": 0.3539403515702153,
430
+ "grad_norm": 0.12158203125,
431
+ "learning_rate": 0.00019518899287155556,
432
+ "loss": 0.1174,
433
+ "step": 56
434
+ },
435
+ {
436
+ "epoch": 0.360260714991112,
437
+ "grad_norm": 0.1181640625,
438
+ "learning_rate": 0.0001949793320090105,
439
+ "loss": 0.1228,
440
+ "step": 57
441
+ },
442
+ {
443
+ "epoch": 0.3665810784120087,
444
+ "grad_norm": 0.13671875,
445
+ "learning_rate": 0.00019476531711828027,
446
+ "loss": 0.125,
447
+ "step": 58
448
+ },
449
+ {
450
+ "epoch": 0.3729014418329054,
451
+ "grad_norm": 0.11962890625,
452
+ "learning_rate": 0.0001945469580102031,
453
+ "loss": 0.1094,
454
+ "step": 59
455
+ },
456
+ {
457
+ "epoch": 0.3792218052538021,
458
+ "grad_norm": 0.10498046875,
459
+ "learning_rate": 0.0001943242646947643,
460
+ "loss": 0.0983,
461
+ "step": 60
462
+ },
463
+ {
464
+ "epoch": 0.3855421686746988,
465
+ "grad_norm": 0.1220703125,
466
+ "learning_rate": 0.00019409724738063714,
467
+ "loss": 0.1164,
468
+ "step": 61
469
+ },
470
+ {
471
+ "epoch": 0.3918625320955955,
472
+ "grad_norm": 0.11767578125,
473
+ "learning_rate": 0.00019386591647471506,
474
+ "loss": 0.1124,
475
+ "step": 62
476
+ },
477
+ {
478
+ "epoch": 0.3981828955164922,
479
+ "grad_norm": 0.11669921875,
480
+ "learning_rate": 0.00019363028258163447,
481
+ "loss": 0.1188,
482
+ "step": 63
483
+ },
484
+ {
485
+ "epoch": 0.4045032589373889,
486
+ "grad_norm": 0.12255859375,
487
+ "learning_rate": 0.00019339035650328869,
488
+ "loss": 0.1335,
489
+ "step": 64
490
+ },
491
+ {
492
+ "epoch": 0.4045032589373889,
493
+ "eval_loss": 0.11877521872520447,
494
+ "eval_runtime": 55.4677,
495
+ "eval_samples_per_second": 19.218,
496
+ "eval_steps_per_second": 19.218,
497
+ "step": 64
498
+ },
499
+ {
500
+ "epoch": 0.4108236223582856,
501
+ "grad_norm": 0.1279296875,
502
+ "learning_rate": 0.0001931461492383327,
503
+ "loss": 0.1447,
504
+ "step": 65
505
+ },
506
+ {
507
+ "epoch": 0.4171439857791823,
508
+ "grad_norm": 0.1044921875,
509
+ "learning_rate": 0.00019289767198167916,
510
+ "loss": 0.1004,
511
+ "step": 66
512
+ },
513
+ {
514
+ "epoch": 0.423464349200079,
515
+ "grad_norm": 0.1171875,
516
+ "learning_rate": 0.00019264493612398481,
517
+ "loss": 0.1228,
518
+ "step": 67
519
+ },
520
+ {
521
+ "epoch": 0.42978471262097573,
522
+ "grad_norm": 0.099609375,
523
+ "learning_rate": 0.0001923879532511287,
524
+ "loss": 0.0963,
525
+ "step": 68
526
+ },
527
+ {
528
+ "epoch": 0.43610507604187243,
529
+ "grad_norm": 0.1015625,
530
+ "learning_rate": 0.0001921267351436808,
531
+ "loss": 0.1025,
532
+ "step": 69
533
+ },
534
+ {
535
+ "epoch": 0.44242543946276913,
536
+ "grad_norm": 0.123046875,
537
+ "learning_rate": 0.0001918612937763622,
538
+ "loss": 0.124,
539
+ "step": 70
540
+ },
541
+ {
542
+ "epoch": 0.44874580288366583,
543
+ "grad_norm": 0.109375,
544
+ "learning_rate": 0.00019159164131749587,
545
+ "loss": 0.1203,
546
+ "step": 71
547
+ },
548
+ {
549
+ "epoch": 0.45506616630456254,
550
+ "grad_norm": 0.109375,
551
+ "learning_rate": 0.00019131779012844912,
552
+ "loss": 0.1052,
553
+ "step": 72
554
+ },
555
+ {
556
+ "epoch": 0.46138652972545924,
557
+ "grad_norm": 0.1162109375,
558
+ "learning_rate": 0.00019103975276306678,
559
+ "loss": 0.1181,
560
+ "step": 73
561
+ },
562
+ {
563
+ "epoch": 0.46770689314635594,
564
+ "grad_norm": 0.11181640625,
565
+ "learning_rate": 0.00019075754196709572,
566
+ "loss": 0.1065,
567
+ "step": 74
568
+ },
569
+ {
570
+ "epoch": 0.47402725656725264,
571
+ "grad_norm": 0.109375,
572
+ "learning_rate": 0.0001904711706776006,
573
+ "loss": 0.1075,
574
+ "step": 75
575
+ },
576
+ {
577
+ "epoch": 0.48034761998814934,
578
+ "grad_norm": 0.11865234375,
579
+ "learning_rate": 0.00019018065202237083,
580
+ "loss": 0.1182,
581
+ "step": 76
582
+ },
583
+ {
584
+ "epoch": 0.48666798340904605,
585
+ "grad_norm": 0.09814453125,
586
+ "learning_rate": 0.00018988599931931866,
587
+ "loss": 0.0913,
588
+ "step": 77
589
+ },
590
+ {
591
+ "epoch": 0.49298834682994275,
592
+ "grad_norm": 0.10791015625,
593
+ "learning_rate": 0.0001895872260758688,
594
+ "loss": 0.103,
595
+ "step": 78
596
+ },
597
+ {
598
+ "epoch": 0.49930871025083945,
599
+ "grad_norm": 0.111328125,
600
+ "learning_rate": 0.00018928434598833912,
601
+ "loss": 0.1106,
602
+ "step": 79
603
+ },
604
+ {
605
+ "epoch": 0.5056290736717362,
606
+ "grad_norm": 0.12451171875,
607
+ "learning_rate": 0.00018897737294131284,
608
+ "loss": 0.1145,
609
+ "step": 80
610
+ },
611
+ {
612
+ "epoch": 0.5056290736717362,
613
+ "eval_loss": 0.11342703551054001,
614
+ "eval_runtime": 55.8581,
615
+ "eval_samples_per_second": 19.084,
616
+ "eval_steps_per_second": 19.084,
617
+ "step": 80
618
+ },
619
+ {
620
+ "epoch": 0.5119494370926329,
621
+ "grad_norm": 0.109375,
622
+ "learning_rate": 0.00018866632100700197,
623
+ "loss": 0.0943,
624
+ "step": 81
625
+ },
626
+ {
627
+ "epoch": 0.5182698005135296,
628
+ "grad_norm": 0.130859375,
629
+ "learning_rate": 0.0001883512044446023,
630
+ "loss": 0.1409,
631
+ "step": 82
632
+ },
633
+ {
634
+ "epoch": 0.5245901639344263,
635
+ "grad_norm": 0.1259765625,
636
+ "learning_rate": 0.00018803203769963967,
637
+ "loss": 0.1364,
638
+ "step": 83
639
+ },
640
+ {
641
+ "epoch": 0.530910527355323,
642
+ "grad_norm": 0.10107421875,
643
+ "learning_rate": 0.0001877088354033077,
644
+ "loss": 0.0904,
645
+ "step": 84
646
+ },
647
+ {
648
+ "epoch": 0.5372308907762197,
649
+ "grad_norm": 0.10107421875,
650
+ "learning_rate": 0.0001873816123717973,
651
+ "loss": 0.0942,
652
+ "step": 85
653
+ },
654
+ {
655
+ "epoch": 0.5435512541971164,
656
+ "grad_norm": 0.11767578125,
657
+ "learning_rate": 0.0001870503836056172,
658
+ "loss": 0.095,
659
+ "step": 86
660
+ },
661
+ {
662
+ "epoch": 0.5498716176180131,
663
+ "grad_norm": 0.10986328125,
664
+ "learning_rate": 0.00018671516428890648,
665
+ "loss": 0.1061,
666
+ "step": 87
667
+ },
668
+ {
669
+ "epoch": 0.5561919810389098,
670
+ "grad_norm": 0.11962890625,
671
+ "learning_rate": 0.00018637596978873835,
672
+ "loss": 0.1209,
673
+ "step": 88
674
+ },
675
+ {
676
+ "epoch": 0.5625123444598065,
677
+ "grad_norm": 0.12451171875,
678
+ "learning_rate": 0.00018603281565441585,
679
+ "loss": 0.1268,
680
+ "step": 89
681
+ },
682
+ {
683
+ "epoch": 0.5688327078807032,
684
+ "grad_norm": 0.11376953125,
685
+ "learning_rate": 0.00018568571761675893,
686
+ "loss": 0.1034,
687
+ "step": 90
688
+ },
689
+ {
690
+ "epoch": 0.5751530713015999,
691
+ "grad_norm": 0.12060546875,
692
+ "learning_rate": 0.00018533469158738344,
693
+ "loss": 0.1265,
694
+ "step": 91
695
+ },
696
+ {
697
+ "epoch": 0.5814734347224966,
698
+ "grad_norm": 0.11328125,
699
+ "learning_rate": 0.0001849797536579715,
700
+ "loss": 0.1123,
701
+ "step": 92
702
+ },
703
+ {
704
+ "epoch": 0.5877937981433933,
705
+ "grad_norm": 0.10498046875,
706
+ "learning_rate": 0.00018462092009953408,
707
+ "loss": 0.1041,
708
+ "step": 93
709
+ },
710
+ {
711
+ "epoch": 0.59411416156429,
712
+ "grad_norm": 0.1171875,
713
+ "learning_rate": 0.0001842582073616649,
714
+ "loss": 0.1197,
715
+ "step": 94
716
+ },
717
+ {
718
+ "epoch": 0.6004345249851867,
719
+ "grad_norm": 0.0986328125,
720
+ "learning_rate": 0.00018389163207178656,
721
+ "loss": 0.0961,
722
+ "step": 95
723
+ },
724
+ {
725
+ "epoch": 0.6067548884060834,
726
+ "grad_norm": 0.1025390625,
727
+ "learning_rate": 0.000183521211034388,
728
+ "loss": 0.1036,
729
+ "step": 96
730
+ },
731
+ {
732
+ "epoch": 0.6067548884060834,
733
+ "eval_loss": 0.10819214582443237,
734
+ "eval_runtime": 56.0566,
735
+ "eval_samples_per_second": 19.017,
736
+ "eval_steps_per_second": 19.017,
737
+ "step": 96
738
+ },
739
+ {
740
+ "epoch": 0.6130752518269801,
741
+ "grad_norm": 0.1015625,
742
+ "learning_rate": 0.00018314696123025454,
743
+ "loss": 0.0953,
744
+ "step": 97
745
+ },
746
+ {
747
+ "epoch": 0.6193956152478768,
748
+ "grad_norm": 0.10791015625,
749
+ "learning_rate": 0.00018276889981568906,
750
+ "loss": 0.091,
751
+ "step": 98
752
+ },
753
+ {
754
+ "epoch": 0.6257159786687735,
755
+ "grad_norm": 0.1103515625,
756
+ "learning_rate": 0.00018238704412172586,
757
+ "loss": 0.0936,
758
+ "step": 99
759
+ },
760
+ {
761
+ "epoch": 0.6320363420896702,
762
+ "grad_norm": 0.11572265625,
763
+ "learning_rate": 0.0001820014116533359,
764
+ "loss": 0.111,
765
+ "step": 100
766
+ },
767
+ {
768
+ "epoch": 0.6383567055105669,
769
+ "grad_norm": 0.1259765625,
770
+ "learning_rate": 0.00018161202008862458,
771
+ "loss": 0.1232,
772
+ "step": 101
773
+ },
774
+ {
775
+ "epoch": 0.6446770689314636,
776
+ "grad_norm": 0.11474609375,
777
+ "learning_rate": 0.00018121888727802113,
778
+ "loss": 0.1072,
779
+ "step": 102
780
+ },
781
+ {
782
+ "epoch": 0.6509974323523603,
783
+ "grad_norm": 0.1103515625,
784
+ "learning_rate": 0.00018082203124346045,
785
+ "loss": 0.1081,
786
+ "step": 103
787
+ },
788
+ {
789
+ "epoch": 0.657317795773257,
790
+ "grad_norm": 0.125,
791
+ "learning_rate": 0.0001804214701775569,
792
+ "loss": 0.1155,
793
+ "step": 104
794
+ },
795
+ {
796
+ "epoch": 0.6636381591941537,
797
+ "grad_norm": 0.11669921875,
798
+ "learning_rate": 0.00018001722244277035,
799
+ "loss": 0.104,
800
+ "step": 105
801
+ },
802
+ {
803
+ "epoch": 0.6699585226150504,
804
+ "grad_norm": 0.10400390625,
805
+ "learning_rate": 0.00017960930657056438,
806
+ "loss": 0.0984,
807
+ "step": 106
808
+ },
809
+ {
810
+ "epoch": 0.6762788860359471,
811
+ "grad_norm": 0.10205078125,
812
+ "learning_rate": 0.00017919774126055673,
813
+ "loss": 0.0931,
814
+ "step": 107
815
+ },
816
+ {
817
+ "epoch": 0.6825992494568438,
818
+ "grad_norm": 0.1044921875,
819
+ "learning_rate": 0.00017878254537966216,
820
+ "loss": 0.1035,
821
+ "step": 108
822
+ },
823
+ {
824
+ "epoch": 0.6889196128777405,
825
+ "grad_norm": 0.1142578125,
826
+ "learning_rate": 0.0001783637379612275,
827
+ "loss": 0.1046,
828
+ "step": 109
829
+ },
830
+ {
831
+ "epoch": 0.6952399762986372,
832
+ "grad_norm": 0.11328125,
833
+ "learning_rate": 0.00017794133820415916,
834
+ "loss": 0.1166,
835
+ "step": 110
836
+ },
837
+ {
838
+ "epoch": 0.7015603397195339,
839
+ "grad_norm": 0.10302734375,
840
+ "learning_rate": 0.00017751536547204295,
841
+ "loss": 0.0937,
842
+ "step": 111
843
+ },
844
+ {
845
+ "epoch": 0.7078807031404306,
846
+ "grad_norm": 0.10302734375,
847
+ "learning_rate": 0.0001770858392922565,
848
+ "loss": 0.0937,
849
+ "step": 112
850
+ },
851
+ {
852
+ "epoch": 0.7078807031404306,
853
+ "eval_loss": 0.10633409768342972,
854
+ "eval_runtime": 54.3141,
855
+ "eval_samples_per_second": 19.627,
856
+ "eval_steps_per_second": 19.627,
857
+ "step": 112
858
+ },
859
+ {
860
+ "epoch": 0.7142010665613273,
861
+ "grad_norm": 0.107421875,
862
+ "learning_rate": 0.00017665277935507398,
863
+ "loss": 0.0908,
864
+ "step": 113
865
+ },
866
+ {
867
+ "epoch": 0.720521429982224,
868
+ "grad_norm": 0.1025390625,
869
+ "learning_rate": 0.00017621620551276366,
870
+ "loss": 0.0896,
871
+ "step": 114
872
+ },
873
+ {
874
+ "epoch": 0.7268417934031207,
875
+ "grad_norm": 0.0986328125,
876
+ "learning_rate": 0.00017577613777867762,
877
+ "loss": 0.0809,
878
+ "step": 115
879
+ },
880
+ {
881
+ "epoch": 0.7331621568240174,
882
+ "grad_norm": 0.10400390625,
883
+ "learning_rate": 0.00017533259632633442,
884
+ "loss": 0.0895,
885
+ "step": 116
886
+ },
887
+ {
888
+ "epoch": 0.7394825202449141,
889
+ "grad_norm": 0.1298828125,
890
+ "learning_rate": 0.00017488560148849427,
891
+ "loss": 0.1193,
892
+ "step": 117
893
+ },
894
+ {
895
+ "epoch": 0.7458028836658108,
896
+ "grad_norm": 0.10791015625,
897
+ "learning_rate": 0.00017443517375622704,
898
+ "loss": 0.1217,
899
+ "step": 118
900
+ },
901
+ {
902
+ "epoch": 0.7521232470867075,
903
+ "grad_norm": 0.115234375,
904
+ "learning_rate": 0.0001739813337779727,
905
+ "loss": 0.1096,
906
+ "step": 119
907
+ },
908
+ {
909
+ "epoch": 0.7584436105076042,
910
+ "grad_norm": 0.10302734375,
911
+ "learning_rate": 0.00017352410235859503,
912
+ "loss": 0.0907,
913
+ "step": 120
914
+ },
915
+ {
916
+ "epoch": 0.7647639739285009,
917
+ "grad_norm": 0.11328125,
918
+ "learning_rate": 0.0001730635004584276,
919
+ "loss": 0.1081,
920
+ "step": 121
921
+ },
922
+ {
923
+ "epoch": 0.7710843373493976,
924
+ "grad_norm": 0.09765625,
925
+ "learning_rate": 0.0001725995491923131,
926
+ "loss": 0.0847,
927
+ "step": 122
928
+ },
929
+ {
930
+ "epoch": 0.7774047007702943,
931
+ "grad_norm": 0.1259765625,
932
+ "learning_rate": 0.0001721322698286354,
933
+ "loss": 0.1134,
934
+ "step": 123
935
+ },
936
+ {
937
+ "epoch": 0.783725064191191,
938
+ "grad_norm": 0.115234375,
939
+ "learning_rate": 0.00017166168378834448,
940
+ "loss": 0.1065,
941
+ "step": 124
942
+ },
943
+ {
944
+ "epoch": 0.7900454276120877,
945
+ "grad_norm": 0.11279296875,
946
+ "learning_rate": 0.00017118781264397446,
947
+ "loss": 0.1078,
948
+ "step": 125
949
+ },
950
+ {
951
+ "epoch": 0.7963657910329844,
952
+ "grad_norm": 0.11767578125,
953
+ "learning_rate": 0.00017071067811865476,
954
+ "loss": 0.1064,
955
+ "step": 126
956
+ },
957
+ {
958
+ "epoch": 0.8026861544538811,
959
+ "grad_norm": 0.1064453125,
960
+ "learning_rate": 0.0001702303020851142,
961
+ "loss": 0.1031,
962
+ "step": 127
963
+ },
964
+ {
965
+ "epoch": 0.8090065178747778,
966
+ "grad_norm": 0.1123046875,
967
+ "learning_rate": 0.00016974670656467824,
968
+ "loss": 0.0934,
969
+ "step": 128
970
+ },
971
+ {
972
+ "epoch": 0.8090065178747778,
973
+ "eval_loss": 0.1029018759727478,
974
+ "eval_runtime": 54.0096,
975
+ "eval_samples_per_second": 19.737,
976
+ "eval_steps_per_second": 19.737,
977
+ "step": 128
978
+ },
979
+ {
980
+ "epoch": 0.8153268812956745,
981
+ "grad_norm": 0.11181640625,
982
+ "learning_rate": 0.0001692599137262597,
983
+ "loss": 0.1022,
984
+ "step": 129
985
+ },
986
+ {
987
+ "epoch": 0.8216472447165712,
988
+ "grad_norm": 0.1025390625,
989
+ "learning_rate": 0.00016876994588534234,
990
+ "loss": 0.0809,
991
+ "step": 130
992
+ },
993
+ {
994
+ "epoch": 0.827967608137468,
995
+ "grad_norm": 0.12353515625,
996
+ "learning_rate": 0.00016827682550295785,
997
+ "loss": 0.0976,
998
+ "step": 131
999
+ },
1000
+ {
1001
+ "epoch": 0.8342879715583646,
1002
+ "grad_norm": 0.11474609375,
1003
+ "learning_rate": 0.0001677805751846563,
1004
+ "loss": 0.1027,
1005
+ "step": 132
1006
+ },
1007
+ {
1008
+ "epoch": 0.8406083349792614,
1009
+ "grad_norm": 0.1142578125,
1010
+ "learning_rate": 0.00016728121767946977,
1011
+ "loss": 0.0912,
1012
+ "step": 133
1013
+ },
1014
+ {
1015
+ "epoch": 0.846928698400158,
1016
+ "grad_norm": 0.10498046875,
1017
+ "learning_rate": 0.00016677877587886956,
1018
+ "loss": 0.0913,
1019
+ "step": 134
1020
+ },
1021
+ {
1022
+ "epoch": 0.8532490618210548,
1023
+ "grad_norm": 0.11474609375,
1024
+ "learning_rate": 0.00016627327281571678,
1025
+ "loss": 0.1078,
1026
+ "step": 135
1027
+ },
1028
+ {
1029
+ "epoch": 0.8595694252419515,
1030
+ "grad_norm": 0.1435546875,
1031
+ "learning_rate": 0.00016576473166320644,
1032
+ "loss": 0.1356,
1033
+ "step": 136
1034
+ },
1035
+ {
1036
+ "epoch": 0.8658897886628482,
1037
+ "grad_norm": 0.10791015625,
1038
+ "learning_rate": 0.00016525317573380525,
1039
+ "loss": 0.1007,
1040
+ "step": 137
1041
+ },
1042
+ {
1043
+ "epoch": 0.8722101520837449,
1044
+ "grad_norm": 0.1044921875,
1045
+ "learning_rate": 0.00016473862847818277,
1046
+ "loss": 0.1005,
1047
+ "step": 138
1048
+ },
1049
+ {
1050
+ "epoch": 0.8785305155046416,
1051
+ "grad_norm": 0.10546875,
1052
+ "learning_rate": 0.00016422111348413657,
1053
+ "loss": 0.1016,
1054
+ "step": 139
1055
+ },
1056
+ {
1057
+ "epoch": 0.8848508789255383,
1058
+ "grad_norm": 0.1025390625,
1059
+ "learning_rate": 0.00016370065447551078,
1060
+ "loss": 0.0898,
1061
+ "step": 140
1062
+ },
1063
+ {
1064
+ "epoch": 0.891171242346435,
1065
+ "grad_norm": 0.11181640625,
1066
+ "learning_rate": 0.0001631772753111086,
1067
+ "loss": 0.0933,
1068
+ "step": 141
1069
+ },
1070
+ {
1071
+ "epoch": 0.8974916057673317,
1072
+ "grad_norm": 0.11376953125,
1073
+ "learning_rate": 0.00016265099998359866,
1074
+ "loss": 0.0991,
1075
+ "step": 142
1076
+ },
1077
+ {
1078
+ "epoch": 0.9038119691882284,
1079
+ "grad_norm": 0.10595703125,
1080
+ "learning_rate": 0.00016212185261841499,
1081
+ "loss": 0.0904,
1082
+ "step": 143
1083
+ },
1084
+ {
1085
+ "epoch": 0.9101323326091251,
1086
+ "grad_norm": 0.10693359375,
1087
+ "learning_rate": 0.00016158985747265108,
1088
+ "loss": 0.0975,
1089
+ "step": 144
1090
+ },
1091
+ {
1092
+ "epoch": 0.9101323326091251,
1093
+ "eval_loss": 0.10078423470258713,
1094
+ "eval_runtime": 52.712,
1095
+ "eval_samples_per_second": 20.223,
1096
+ "eval_steps_per_second": 20.223,
1097
+ "step": 144
1098
+ },
1099
+ {
1100
+ "epoch": 0.9164526960300218,
1101
+ "grad_norm": 0.10009765625,
1102
+ "learning_rate": 0.00016105503893394806,
1103
+ "loss": 0.0921,
1104
+ "step": 145
1105
+ },
1106
+ {
1107
+ "epoch": 0.9227730594509185,
1108
+ "grad_norm": 0.1025390625,
1109
+ "learning_rate": 0.00016051742151937655,
1110
+ "loss": 0.0927,
1111
+ "step": 146
1112
+ },
1113
+ {
1114
+ "epoch": 0.9290934228718152,
1115
+ "grad_norm": 0.10107421875,
1116
+ "learning_rate": 0.0001599770298743128,
1117
+ "loss": 0.0915,
1118
+ "step": 147
1119
+ },
1120
+ {
1121
+ "epoch": 0.9354137862927119,
1122
+ "grad_norm": 0.11279296875,
1123
+ "learning_rate": 0.000159433888771309,
1124
+ "loss": 0.1038,
1125
+ "step": 148
1126
+ },
1127
+ {
1128
+ "epoch": 0.9417341497136086,
1129
+ "grad_norm": 0.11962890625,
1130
+ "learning_rate": 0.00015888802310895742,
1131
+ "loss": 0.1063,
1132
+ "step": 149
1133
+ },
1134
+ {
1135
+ "epoch": 0.9480545131345053,
1136
+ "grad_norm": 0.10205078125,
1137
+ "learning_rate": 0.00015833945791074943,
1138
+ "loss": 0.0796,
1139
+ "step": 150
1140
+ },
1141
+ {
1142
+ "epoch": 0.954374876555402,
1143
+ "grad_norm": 0.10986328125,
1144
+ "learning_rate": 0.00015778821832392777,
1145
+ "loss": 0.0984,
1146
+ "step": 151
1147
+ },
1148
+ {
1149
+ "epoch": 0.9606952399762987,
1150
+ "grad_norm": 0.11865234375,
1151
+ "learning_rate": 0.0001572343296183344,
1152
+ "loss": 0.1029,
1153
+ "step": 152
1154
+ },
1155
+ {
1156
+ "epoch": 0.9670156033971954,
1157
+ "grad_norm": 0.10546875,
1158
+ "learning_rate": 0.00015667781718525157,
1159
+ "loss": 0.0903,
1160
+ "step": 153
1161
+ },
1162
+ {
1163
+ "epoch": 0.9733359668180921,
1164
+ "grad_norm": 0.10498046875,
1165
+ "learning_rate": 0.00015611870653623825,
1166
+ "loss": 0.0961,
1167
+ "step": 154
1168
+ },
1169
+ {
1170
+ "epoch": 0.9796563302389888,
1171
+ "grad_norm": 0.09423828125,
1172
+ "learning_rate": 0.00015555702330196023,
1173
+ "loss": 0.0752,
1174
+ "step": 155
1175
+ },
1176
+ {
1177
+ "epoch": 0.9859766936598855,
1178
+ "grad_norm": 0.111328125,
1179
+ "learning_rate": 0.0001549927932310155,
1180
+ "loss": 0.1046,
1181
+ "step": 156
1182
+ },
1183
+ {
1184
+ "epoch": 0.9922970570807822,
1185
+ "grad_norm": 0.11083984375,
1186
+ "learning_rate": 0.0001544260421887537,
1187
+ "loss": 0.0966,
1188
+ "step": 157
1189
+ },
1190
+ {
1191
+ "epoch": 0.9986174205016789,
1192
+ "grad_norm": 0.11474609375,
1193
+ "learning_rate": 0.00015385679615609042,
1194
+ "loss": 0.1116,
1195
+ "step": 158
1196
+ },
1197
+ {
1198
+ "epoch": 1.0049377839225755,
1199
+ "grad_norm": 0.1005859375,
1200
+ "learning_rate": 0.00015328508122831636,
1201
+ "loss": 0.0839,
1202
+ "step": 159
1203
+ },
1204
+ {
1205
+ "epoch": 1.0112581473434723,
1206
+ "grad_norm": 0.09912109375,
1207
+ "learning_rate": 0.00015271092361390077,
1208
+ "loss": 0.0657,
1209
+ "step": 160
1210
+ },
1211
+ {
1212
+ "epoch": 1.0112581473434723,
1213
+ "eval_loss": 0.0979941338300705,
1214
+ "eval_runtime": 52.8145,
1215
+ "eval_samples_per_second": 20.184,
1216
+ "eval_steps_per_second": 20.184,
1217
+ "step": 160
1218
+ },
1219
+ {
1220
+ "epoch": 1.017578510764369,
1221
+ "grad_norm": 0.10107421875,
1222
+ "learning_rate": 0.0001521343496332903,
1223
+ "loss": 0.0778,
1224
+ "step": 161
1225
+ },
1226
+ {
1227
+ "epoch": 1.0238988741852657,
1228
+ "grad_norm": 0.0869140625,
1229
+ "learning_rate": 0.00015155538571770218,
1230
+ "loss": 0.0658,
1231
+ "step": 162
1232
+ },
1233
+ {
1234
+ "epoch": 1.0302192376061623,
1235
+ "grad_norm": 0.099609375,
1236
+ "learning_rate": 0.00015097405840791276,
1237
+ "loss": 0.0716,
1238
+ "step": 163
1239
+ },
1240
+ {
1241
+ "epoch": 1.036539601027059,
1242
+ "grad_norm": 0.09228515625,
1243
+ "learning_rate": 0.00015039039435304078,
1244
+ "loss": 0.064,
1245
+ "step": 164
1246
+ },
1247
+ {
1248
+ "epoch": 1.0428599644479557,
1249
+ "grad_norm": 0.12255859375,
1250
+ "learning_rate": 0.00014980442030932558,
1251
+ "loss": 0.0944,
1252
+ "step": 165
1253
+ },
1254
+ {
1255
+ "epoch": 1.0491803278688525,
1256
+ "grad_norm": 0.1064453125,
1257
+ "learning_rate": 0.00014921616313890072,
1258
+ "loss": 0.0731,
1259
+ "step": 166
1260
+ },
1261
+ {
1262
+ "epoch": 1.055500691289749,
1263
+ "grad_norm": 0.1005859375,
1264
+ "learning_rate": 0.00014862564980856258,
1265
+ "loss": 0.0557,
1266
+ "step": 167
1267
+ },
1268
+ {
1269
+ "epoch": 1.061821054710646,
1270
+ "grad_norm": 0.13671875,
1271
+ "learning_rate": 0.00014803290738853395,
1272
+ "loss": 0.0874,
1273
+ "step": 168
1274
+ },
1275
+ {
1276
+ "epoch": 1.0681414181315425,
1277
+ "grad_norm": 0.11328125,
1278
+ "learning_rate": 0.00014743796305122331,
1279
+ "loss": 0.0696,
1280
+ "step": 169
1281
+ },
1282
+ {
1283
+ "epoch": 1.0744617815524393,
1284
+ "grad_norm": 0.111328125,
1285
+ "learning_rate": 0.00014684084406997903,
1286
+ "loss": 0.0681,
1287
+ "step": 170
1288
+ },
1289
+ {
1290
+ "epoch": 1.080782144973336,
1291
+ "grad_norm": 0.107421875,
1292
+ "learning_rate": 0.00014624157781783926,
1293
+ "loss": 0.0692,
1294
+ "step": 171
1295
+ },
1296
+ {
1297
+ "epoch": 1.0871025083942327,
1298
+ "grad_norm": 0.107421875,
1299
+ "learning_rate": 0.0001456401917662769,
1300
+ "loss": 0.0675,
1301
+ "step": 172
1302
+ },
1303
+ {
1304
+ "epoch": 1.0934228718151293,
1305
+ "grad_norm": 0.115234375,
1306
+ "learning_rate": 0.00014503671348394057,
1307
+ "loss": 0.0689,
1308
+ "step": 173
1309
+ },
1310
+ {
1311
+ "epoch": 1.0997432352360261,
1312
+ "grad_norm": 0.11572265625,
1313
+ "learning_rate": 0.00014443117063539038,
1314
+ "loss": 0.0824,
1315
+ "step": 174
1316
+ },
1317
+ {
1318
+ "epoch": 1.1060635986569227,
1319
+ "grad_norm": 0.11279296875,
1320
+ "learning_rate": 0.00014382359097983013,
1321
+ "loss": 0.0708,
1322
+ "step": 175
1323
+ },
1324
+ {
1325
+ "epoch": 1.1123839620778195,
1326
+ "grad_norm": 0.1064453125,
1327
+ "learning_rate": 0.00014321400236983457,
1328
+ "loss": 0.0671,
1329
+ "step": 176
1330
+ },
1331
+ {
1332
+ "epoch": 1.1123839620778195,
1333
+ "eval_loss": 0.09898500144481659,
1334
+ "eval_runtime": 52.0221,
1335
+ "eval_samples_per_second": 20.491,
1336
+ "eval_steps_per_second": 20.491,
1337
+ "step": 176
1338
+ },
1339
+ {
1340
+ "epoch": 1.1187043254987161,
1341
+ "grad_norm": 0.10400390625,
1342
+ "learning_rate": 0.00014260243275007265,
1343
+ "loss": 0.0725,
1344
+ "step": 177
1345
+ },
1346
+ {
1347
+ "epoch": 1.125024688919613,
1348
+ "grad_norm": 0.10888671875,
1349
+ "learning_rate": 0.00014198891015602646,
1350
+ "loss": 0.0704,
1351
+ "step": 178
1352
+ },
1353
+ {
1354
+ "epoch": 1.1313450523405095,
1355
+ "grad_norm": 0.10009765625,
1356
+ "learning_rate": 0.00014137346271270604,
1357
+ "loss": 0.0675,
1358
+ "step": 179
1359
+ },
1360
+ {
1361
+ "epoch": 1.1376654157614063,
1362
+ "grad_norm": 0.08984375,
1363
+ "learning_rate": 0.0001407561186333601,
1364
+ "loss": 0.0638,
1365
+ "step": 180
1366
+ },
1367
+ {
1368
+ "epoch": 1.143985779182303,
1369
+ "grad_norm": 0.1171875,
1370
+ "learning_rate": 0.00014013690621818262,
1371
+ "loss": 0.0792,
1372
+ "step": 181
1373
+ },
1374
+ {
1375
+ "epoch": 1.1503061426031997,
1376
+ "grad_norm": 0.09912109375,
1377
+ "learning_rate": 0.00013951585385301555,
1378
+ "loss": 0.0748,
1379
+ "step": 182
1380
+ },
1381
+ {
1382
+ "epoch": 1.1566265060240963,
1383
+ "grad_norm": 0.10986328125,
1384
+ "learning_rate": 0.0001388929900080476,
1385
+ "loss": 0.0641,
1386
+ "step": 183
1387
+ },
1388
+ {
1389
+ "epoch": 1.1629468694449931,
1390
+ "grad_norm": 0.1044921875,
1391
+ "learning_rate": 0.000138268343236509,
1392
+ "loss": 0.0655,
1393
+ "step": 184
1394
+ },
1395
+ {
1396
+ "epoch": 1.1692672328658897,
1397
+ "grad_norm": 0.109375,
1398
+ "learning_rate": 0.00013764194217336264,
1399
+ "loss": 0.0696,
1400
+ "step": 185
1401
+ },
1402
+ {
1403
+ "epoch": 1.1755875962867866,
1404
+ "grad_norm": 0.1103515625,
1405
+ "learning_rate": 0.00013701381553399145,
1406
+ "loss": 0.0648,
1407
+ "step": 186
1408
+ },
1409
+ {
1410
+ "epoch": 1.1819079597076831,
1411
+ "grad_norm": 0.107421875,
1412
+ "learning_rate": 0.00013638399211288188,
1413
+ "loss": 0.0705,
1414
+ "step": 187
1415
+ },
1416
+ {
1417
+ "epoch": 1.18822832312858,
1418
+ "grad_norm": 0.1201171875,
1419
+ "learning_rate": 0.000135752500782304,
1420
+ "loss": 0.074,
1421
+ "step": 188
1422
+ },
1423
+ {
1424
+ "epoch": 1.1945486865494765,
1425
+ "grad_norm": 0.10595703125,
1426
+ "learning_rate": 0.00013511937049098805,
1427
+ "loss": 0.0616,
1428
+ "step": 189
1429
+ },
1430
+ {
1431
+ "epoch": 1.2008690499703734,
1432
+ "grad_norm": 0.1025390625,
1433
+ "learning_rate": 0.00013448463026279704,
1434
+ "loss": 0.0688,
1435
+ "step": 190
1436
+ },
1437
+ {
1438
+ "epoch": 1.20718941339127,
1439
+ "grad_norm": 0.091796875,
1440
+ "learning_rate": 0.0001338483091953967,
1441
+ "loss": 0.0506,
1442
+ "step": 191
1443
+ },
1444
+ {
1445
+ "epoch": 1.2135097768121668,
1446
+ "grad_norm": 0.107421875,
1447
+ "learning_rate": 0.0001332104364589212,
1448
+ "loss": 0.0664,
1449
+ "step": 192
1450
+ },
1451
+ {
1452
+ "epoch": 1.2135097768121668,
1453
+ "eval_loss": 0.09864839166402817,
1454
+ "eval_runtime": 52.1317,
1455
+ "eval_samples_per_second": 20.448,
1456
+ "eval_steps_per_second": 20.448,
1457
+ "step": 192
1458
+ },
1459
+ {
1460
+ "epoch": 1.2198301402330634,
1461
+ "grad_norm": 0.11181640625,
1462
+ "learning_rate": 0.00013257104129463614,
1463
+ "loss": 0.0759,
1464
+ "step": 193
1465
+ },
1466
+ {
1467
+ "epoch": 1.2261505036539602,
1468
+ "grad_norm": 0.1083984375,
1469
+ "learning_rate": 0.000131930153013598,
1470
+ "loss": 0.0667,
1471
+ "step": 194
1472
+ },
1473
+ {
1474
+ "epoch": 1.2324708670748568,
1475
+ "grad_norm": 0.10498046875,
1476
+ "learning_rate": 0.00013128780099531056,
1477
+ "loss": 0.0751,
1478
+ "step": 195
1479
+ },
1480
+ {
1481
+ "epoch": 1.2387912304957536,
1482
+ "grad_norm": 0.10546875,
1483
+ "learning_rate": 0.00013064401468637792,
1484
+ "loss": 0.0703,
1485
+ "step": 196
1486
+ },
1487
+ {
1488
+ "epoch": 1.2451115939166502,
1489
+ "grad_norm": 0.1064453125,
1490
+ "learning_rate": 0.0001299988235991548,
1491
+ "loss": 0.0687,
1492
+ "step": 197
1493
+ },
1494
+ {
1495
+ "epoch": 1.251431957337547,
1496
+ "grad_norm": 0.11083984375,
1497
+ "learning_rate": 0.00012935225731039348,
1498
+ "loss": 0.073,
1499
+ "step": 198
1500
+ },
1501
+ {
1502
+ "epoch": 1.2577523207584436,
1503
+ "grad_norm": 0.11279296875,
1504
+ "learning_rate": 0.00012870434545988812,
1505
+ "loss": 0.0754,
1506
+ "step": 199
1507
+ },
1508
+ {
1509
+ "epoch": 1.2640726841793404,
1510
+ "grad_norm": 0.09375,
1511
+ "learning_rate": 0.00012805511774911584,
1512
+ "loss": 0.059,
1513
+ "step": 200
1514
+ },
1515
+ {
1516
+ "epoch": 1.270393047600237,
1517
+ "grad_norm": 0.0927734375,
1518
+ "learning_rate": 0.00012740460393987526,
1519
+ "loss": 0.0574,
1520
+ "step": 201
1521
+ },
1522
+ {
1523
+ "epoch": 1.2767134110211338,
1524
+ "grad_norm": 0.11572265625,
1525
+ "learning_rate": 0.00012675283385292212,
1526
+ "loss": 0.077,
1527
+ "step": 202
1528
+ },
1529
+ {
1530
+ "epoch": 1.2830337744420304,
1531
+ "grad_norm": 0.10205078125,
1532
+ "learning_rate": 0.0001260998373666022,
1533
+ "loss": 0.0632,
1534
+ "step": 203
1535
+ },
1536
+ {
1537
+ "epoch": 1.2893541378629272,
1538
+ "grad_norm": 0.10302734375,
1539
+ "learning_rate": 0.00012544564441548182,
1540
+ "loss": 0.0665,
1541
+ "step": 204
1542
+ },
1543
+ {
1544
+ "epoch": 1.2956745012838238,
1545
+ "grad_norm": 0.09326171875,
1546
+ "learning_rate": 0.00012479028498897535,
1547
+ "loss": 0.058,
1548
+ "step": 205
1549
+ },
1550
+ {
1551
+ "epoch": 1.3019948647047206,
1552
+ "grad_norm": 0.115234375,
1553
+ "learning_rate": 0.00012413378912997058,
1554
+ "loss": 0.0652,
1555
+ "step": 206
1556
+ },
1557
+ {
1558
+ "epoch": 1.3083152281256172,
1559
+ "grad_norm": 0.08544921875,
1560
+ "learning_rate": 0.0001234761869334515,
1561
+ "loss": 0.0526,
1562
+ "step": 207
1563
+ },
1564
+ {
1565
+ "epoch": 1.314635591546514,
1566
+ "grad_norm": 0.10595703125,
1567
+ "learning_rate": 0.0001228175085451186,
1568
+ "loss": 0.0735,
1569
+ "step": 208
1570
+ },
1571
+ {
1572
+ "epoch": 1.314635591546514,
1573
+ "eval_loss": 0.09652113914489746,
1574
+ "eval_runtime": 51.6293,
1575
+ "eval_samples_per_second": 20.647,
1576
+ "eval_steps_per_second": 20.647,
1577
+ "step": 208
1578
+ },
1579
+ {
1580
+ "epoch": 1.3209559549674106,
1581
+ "grad_norm": 0.1259765625,
1582
+ "learning_rate": 0.00012215778416000707,
1583
+ "loss": 0.0833,
1584
+ "step": 209
1585
+ },
1586
+ {
1587
+ "epoch": 1.3272763183883074,
1588
+ "grad_norm": 0.1103515625,
1589
+ "learning_rate": 0.00012149704402110243,
1590
+ "loss": 0.068,
1591
+ "step": 210
1592
+ },
1593
+ {
1594
+ "epoch": 1.333596681809204,
1595
+ "grad_norm": 0.10107421875,
1596
+ "learning_rate": 0.00012083531841795425,
1597
+ "loss": 0.0639,
1598
+ "step": 211
1599
+ },
1600
+ {
1601
+ "epoch": 1.3399170452301008,
1602
+ "grad_norm": 0.10302734375,
1603
+ "learning_rate": 0.00012017263768528775,
1604
+ "loss": 0.0671,
1605
+ "step": 212
1606
+ },
1607
+ {
1608
+ "epoch": 1.3462374086509974,
1609
+ "grad_norm": 0.10595703125,
1610
+ "learning_rate": 0.00011950903220161285,
1611
+ "loss": 0.0655,
1612
+ "step": 213
1613
+ },
1614
+ {
1615
+ "epoch": 1.3525577720718942,
1616
+ "grad_norm": 0.10498046875,
1617
+ "learning_rate": 0.00011884453238783185,
1618
+ "loss": 0.0741,
1619
+ "step": 214
1620
+ },
1621
+ {
1622
+ "epoch": 1.3588781354927908,
1623
+ "grad_norm": 0.09619140625,
1624
+ "learning_rate": 0.00011817916870584482,
1625
+ "loss": 0.0609,
1626
+ "step": 215
1627
+ },
1628
+ {
1629
+ "epoch": 1.3651984989136876,
1630
+ "grad_norm": 0.10546875,
1631
+ "learning_rate": 0.00011751297165715309,
1632
+ "loss": 0.074,
1633
+ "step": 216
1634
+ },
1635
+ {
1636
+ "epoch": 1.3715188623345842,
1637
+ "grad_norm": 0.12158203125,
1638
+ "learning_rate": 0.00011684597178146115,
1639
+ "loss": 0.0724,
1640
+ "step": 217
1641
+ },
1642
+ {
1643
+ "epoch": 1.377839225755481,
1644
+ "grad_norm": 0.1044921875,
1645
+ "learning_rate": 0.0001161781996552765,
1646
+ "loss": 0.0649,
1647
+ "step": 218
1648
+ },
1649
+ {
1650
+ "epoch": 1.3841595891763776,
1651
+ "grad_norm": 0.1376953125,
1652
+ "learning_rate": 0.00011550968589050799,
1653
+ "loss": 0.0729,
1654
+ "step": 219
1655
+ },
1656
+ {
1657
+ "epoch": 1.3904799525972744,
1658
+ "grad_norm": 0.1005859375,
1659
+ "learning_rate": 0.00011484046113306262,
1660
+ "loss": 0.0555,
1661
+ "step": 220
1662
+ },
1663
+ {
1664
+ "epoch": 1.396800316018171,
1665
+ "grad_norm": 0.12060546875,
1666
+ "learning_rate": 0.0001141705560614406,
1667
+ "loss": 0.0804,
1668
+ "step": 221
1669
+ },
1670
+ {
1671
+ "epoch": 1.4031206794390678,
1672
+ "grad_norm": 0.11181640625,
1673
+ "learning_rate": 0.00011350000138532902,
1674
+ "loss": 0.0694,
1675
+ "step": 222
1676
+ },
1677
+ {
1678
+ "epoch": 1.4094410428599644,
1679
+ "grad_norm": 0.1162109375,
1680
+ "learning_rate": 0.00011282882784419398,
1681
+ "loss": 0.0784,
1682
+ "step": 223
1683
+ },
1684
+ {
1685
+ "epoch": 1.4157614062808612,
1686
+ "grad_norm": 0.11181640625,
1687
+ "learning_rate": 0.00011215706620587149,
1688
+ "loss": 0.0694,
1689
+ "step": 224
1690
+ },
1691
+ {
1692
+ "epoch": 1.4157614062808612,
1693
+ "eval_loss": 0.09438645094633102,
1694
+ "eval_runtime": 52.0469,
1695
+ "eval_samples_per_second": 20.482,
1696
+ "eval_steps_per_second": 20.482,
1697
+ "step": 224
1698
+ },
1699
+ {
1700
+ "epoch": 1.4220817697017578,
1701
+ "grad_norm": 0.10888671875,
1702
+ "learning_rate": 0.00011148474726515716,
1703
+ "loss": 0.0687,
1704
+ "step": 225
1705
+ },
1706
+ {
1707
+ "epoch": 1.4284021331226546,
1708
+ "grad_norm": 0.1181640625,
1709
+ "learning_rate": 0.00011081190184239419,
1710
+ "loss": 0.0644,
1711
+ "step": 226
1712
+ },
1713
+ {
1714
+ "epoch": 1.4347224965435512,
1715
+ "grad_norm": 0.11474609375,
1716
+ "learning_rate": 0.0001101385607820608,
1717
+ "loss": 0.0791,
1718
+ "step": 227
1719
+ },
1720
+ {
1721
+ "epoch": 1.441042859964448,
1722
+ "grad_norm": 0.103515625,
1723
+ "learning_rate": 0.0001094647549513561,
1724
+ "loss": 0.0667,
1725
+ "step": 228
1726
+ },
1727
+ {
1728
+ "epoch": 1.4473632233853446,
1729
+ "grad_norm": 0.109375,
1730
+ "learning_rate": 0.00010879051523878522,
1731
+ "loss": 0.0662,
1732
+ "step": 229
1733
+ },
1734
+ {
1735
+ "epoch": 1.4536835868062414,
1736
+ "grad_norm": 0.11474609375,
1737
+ "learning_rate": 0.00010811587255274313,
1738
+ "loss": 0.0726,
1739
+ "step": 230
1740
+ },
1741
+ {
1742
+ "epoch": 1.460003950227138,
1743
+ "grad_norm": 0.10400390625,
1744
+ "learning_rate": 0.00010744085782009792,
1745
+ "loss": 0.0639,
1746
+ "step": 231
1747
+ },
1748
+ {
1749
+ "epoch": 1.4663243136480348,
1750
+ "grad_norm": 0.1181640625,
1751
+ "learning_rate": 0.00010676550198477293,
1752
+ "loss": 0.0728,
1753
+ "step": 232
1754
+ },
1755
+ {
1756
+ "epoch": 1.4726446770689314,
1757
+ "grad_norm": 0.11669921875,
1758
+ "learning_rate": 0.00010608983600632831,
1759
+ "loss": 0.0784,
1760
+ "step": 233
1761
+ },
1762
+ {
1763
+ "epoch": 1.4789650404898282,
1764
+ "grad_norm": 0.103515625,
1765
+ "learning_rate": 0.00010541389085854176,
1766
+ "loss": 0.0635,
1767
+ "step": 234
1768
+ },
1769
+ {
1770
+ "epoch": 1.4852854039107248,
1771
+ "grad_norm": 0.10302734375,
1772
+ "learning_rate": 0.00010473769752798859,
1773
+ "loss": 0.0613,
1774
+ "step": 235
1775
+ },
1776
+ {
1777
+ "epoch": 1.4916057673316216,
1778
+ "grad_norm": 0.107421875,
1779
+ "learning_rate": 0.00010406128701262128,
1780
+ "loss": 0.0712,
1781
+ "step": 236
1782
+ },
1783
+ {
1784
+ "epoch": 1.4979261307525182,
1785
+ "grad_norm": 0.111328125,
1786
+ "learning_rate": 0.00010338469032034845,
1787
+ "loss": 0.069,
1788
+ "step": 237
1789
+ },
1790
+ {
1791
+ "epoch": 1.5042464941734148,
1792
+ "grad_norm": 0.10400390625,
1793
+ "learning_rate": 0.00010270793846761347,
1794
+ "loss": 0.0643,
1795
+ "step": 238
1796
+ },
1797
+ {
1798
+ "epoch": 1.5105668575943116,
1799
+ "grad_norm": 0.11865234375,
1800
+ "learning_rate": 0.00010203106247797243,
1801
+ "loss": 0.0768,
1802
+ "step": 239
1803
+ },
1804
+ {
1805
+ "epoch": 1.5168872210152085,
1806
+ "grad_norm": 0.09521484375,
1807
+ "learning_rate": 0.00010135409338067219,
1808
+ "loss": 0.0555,
1809
+ "step": 240
1810
+ },
1811
+ {
1812
+ "epoch": 1.5168872210152085,
1813
+ "eval_loss": 0.0922728106379509,
1814
+ "eval_runtime": 52.2924,
1815
+ "eval_samples_per_second": 20.385,
1816
+ "eval_steps_per_second": 20.385,
1817
+ "step": 240
1818
+ },
1819
+ {
1820
+ "epoch": 1.523207584436105,
1821
+ "grad_norm": 0.1044921875,
1822
+ "learning_rate": 0.00010067706220922785,
1823
+ "loss": 0.0578,
1824
+ "step": 241
1825
+ },
1826
+ {
1827
+ "epoch": 1.5295279478570016,
1828
+ "grad_norm": 0.1103515625,
1829
+ "learning_rate": 0.0001,
1830
+ "loss": 0.0706,
1831
+ "step": 242
1832
+ },
1833
+ {
1834
+ "epoch": 1.5358483112778984,
1835
+ "grad_norm": 0.09423828125,
1836
+ "learning_rate": 9.932293779077216e-05,
1837
+ "loss": 0.0602,
1838
+ "step": 243
1839
+ },
1840
+ {
1841
+ "epoch": 1.5421686746987953,
1842
+ "grad_norm": 0.10791015625,
1843
+ "learning_rate": 9.864590661932783e-05,
1844
+ "loss": 0.0632,
1845
+ "step": 244
1846
+ },
1847
+ {
1848
+ "epoch": 1.5484890381196919,
1849
+ "grad_norm": 0.1044921875,
1850
+ "learning_rate": 9.796893752202758e-05,
1851
+ "loss": 0.0628,
1852
+ "step": 245
1853
+ },
1854
+ {
1855
+ "epoch": 1.5548094015405884,
1856
+ "grad_norm": 0.10009765625,
1857
+ "learning_rate": 9.729206153238657e-05,
1858
+ "loss": 0.0668,
1859
+ "step": 246
1860
+ },
1861
+ {
1862
+ "epoch": 1.5611297649614853,
1863
+ "grad_norm": 0.11767578125,
1864
+ "learning_rate": 9.661530967965156e-05,
1865
+ "loss": 0.0734,
1866
+ "step": 247
1867
+ },
1868
+ {
1869
+ "epoch": 1.567450128382382,
1870
+ "grad_norm": 0.09375,
1871
+ "learning_rate": 9.59387129873787e-05,
1872
+ "loss": 0.0584,
1873
+ "step": 248
1874
+ },
1875
+ {
1876
+ "epoch": 1.5737704918032787,
1877
+ "grad_norm": 0.10595703125,
1878
+ "learning_rate": 9.526230247201142e-05,
1879
+ "loss": 0.0601,
1880
+ "step": 249
1881
+ },
1882
+ {
1883
+ "epoch": 1.5800908552241753,
1884
+ "grad_norm": 0.08203125,
1885
+ "learning_rate": 9.458610914145826e-05,
1886
+ "loss": 0.046,
1887
+ "step": 250
1888
+ },
1889
+ {
1890
+ "epoch": 1.586411218645072,
1891
+ "grad_norm": 0.1083984375,
1892
+ "learning_rate": 9.391016399367172e-05,
1893
+ "loss": 0.0624,
1894
+ "step": 251
1895
+ },
1896
+ {
1897
+ "epoch": 1.5927315820659689,
1898
+ "grad_norm": 0.1171875,
1899
+ "learning_rate": 9.323449801522709e-05,
1900
+ "loss": 0.0755,
1901
+ "step": 252
1902
+ },
1903
+ {
1904
+ "epoch": 1.5990519454868655,
1905
+ "grad_norm": 0.12158203125,
1906
+ "learning_rate": 9.255914217990211e-05,
1907
+ "loss": 0.0758,
1908
+ "step": 253
1909
+ },
1910
+ {
1911
+ "epoch": 1.605372308907762,
1912
+ "grad_norm": 0.10107421875,
1913
+ "learning_rate": 9.18841274472569e-05,
1914
+ "loss": 0.0637,
1915
+ "step": 254
1916
+ },
1917
+ {
1918
+ "epoch": 1.6116926723286589,
1919
+ "grad_norm": 0.10986328125,
1920
+ "learning_rate": 9.120948476121479e-05,
1921
+ "loss": 0.0654,
1922
+ "step": 255
1923
+ },
1924
+ {
1925
+ "epoch": 1.6180130357495557,
1926
+ "grad_norm": 0.1123046875,
1927
+ "learning_rate": 9.05352450486439e-05,
1928
+ "loss": 0.0719,
1929
+ "step": 256
1930
+ },
1931
+ {
1932
+ "epoch": 1.6180130357495557,
1933
+ "eval_loss": 0.09138685464859009,
1934
+ "eval_runtime": 54.5034,
1935
+ "eval_samples_per_second": 19.558,
1936
+ "eval_steps_per_second": 19.558,
1937
+ "step": 256
1938
+ },
1939
+ {
1940
+ "epoch": 1.6243333991704523,
1941
+ "grad_norm": 0.1044921875,
1942
+ "learning_rate": 8.986143921793923e-05,
1943
+ "loss": 0.0661,
1944
+ "step": 257
1945
+ },
1946
+ {
1947
+ "epoch": 1.6306537625913489,
1948
+ "grad_norm": 0.11376953125,
1949
+ "learning_rate": 8.918809815760585e-05,
1950
+ "loss": 0.0764,
1951
+ "step": 258
1952
+ },
1953
+ {
1954
+ "epoch": 1.6369741260122457,
1955
+ "grad_norm": 0.1025390625,
1956
+ "learning_rate": 8.851525273484286e-05,
1957
+ "loss": 0.0648,
1958
+ "step": 259
1959
+ },
1960
+ {
1961
+ "epoch": 1.6432944894331425,
1962
+ "grad_norm": 0.11474609375,
1963
+ "learning_rate": 8.78429337941285e-05,
1964
+ "loss": 0.081,
1965
+ "step": 260
1966
+ },
1967
+ {
1968
+ "epoch": 1.649614852854039,
1969
+ "grad_norm": 0.1201171875,
1970
+ "learning_rate": 8.717117215580606e-05,
1971
+ "loss": 0.0738,
1972
+ "step": 261
1973
+ },
1974
+ {
1975
+ "epoch": 1.6559352162749357,
1976
+ "grad_norm": 0.10400390625,
1977
+ "learning_rate": 8.649999861467099e-05,
1978
+ "loss": 0.0688,
1979
+ "step": 262
1980
+ },
1981
+ {
1982
+ "epoch": 1.6622555796958325,
1983
+ "grad_norm": 0.0908203125,
1984
+ "learning_rate": 8.582944393855941e-05,
1985
+ "loss": 0.0541,
1986
+ "step": 263
1987
+ },
1988
+ {
1989
+ "epoch": 1.6685759431167293,
1990
+ "grad_norm": 0.10400390625,
1991
+ "learning_rate": 8.515953886693739e-05,
1992
+ "loss": 0.065,
1993
+ "step": 264
1994
+ },
1995
+ {
1996
+ "epoch": 1.674896306537626,
1997
+ "grad_norm": 0.10205078125,
1998
+ "learning_rate": 8.449031410949206e-05,
1999
+ "loss": 0.0665,
2000
+ "step": 265
2001
+ },
2002
+ {
2003
+ "epoch": 1.6812166699585225,
2004
+ "grad_norm": 0.1015625,
2005
+ "learning_rate": 8.382180034472353e-05,
2006
+ "loss": 0.0592,
2007
+ "step": 266
2008
+ },
2009
+ {
2010
+ "epoch": 1.6875370333794193,
2011
+ "grad_norm": 0.10302734375,
2012
+ "learning_rate": 8.315402821853886e-05,
2013
+ "loss": 0.0592,
2014
+ "step": 267
2015
+ },
2016
+ {
2017
+ "epoch": 1.693857396800316,
2018
+ "grad_norm": 0.103515625,
2019
+ "learning_rate": 8.248702834284693e-05,
2020
+ "loss": 0.0638,
2021
+ "step": 268
2022
+ },
2023
+ {
2024
+ "epoch": 1.7001777602212127,
2025
+ "grad_norm": 0.103515625,
2026
+ "learning_rate": 8.18208312941552e-05,
2027
+ "loss": 0.0657,
2028
+ "step": 269
2029
+ },
2030
+ {
2031
+ "epoch": 1.7064981236421093,
2032
+ "grad_norm": 0.12060546875,
2033
+ "learning_rate": 8.115546761216822e-05,
2034
+ "loss": 0.0802,
2035
+ "step": 270
2036
+ },
2037
+ {
2038
+ "epoch": 1.712818487063006,
2039
+ "grad_norm": 0.111328125,
2040
+ "learning_rate": 8.049096779838719e-05,
2041
+ "loss": 0.0711,
2042
+ "step": 271
2043
+ },
2044
+ {
2045
+ "epoch": 1.719138850483903,
2046
+ "grad_norm": 0.10986328125,
2047
+ "learning_rate": 7.982736231471224e-05,
2048
+ "loss": 0.071,
2049
+ "step": 272
2050
+ },
2051
+ {
2052
+ "epoch": 1.719138850483903,
2053
+ "eval_loss": 0.08944293856620789,
2054
+ "eval_runtime": 54.5995,
2055
+ "eval_samples_per_second": 19.524,
2056
+ "eval_steps_per_second": 19.524,
2057
+ "step": 272
2058
+ },
2059
+ {
2060
+ "epoch": 1.7254592139047995,
2061
+ "grad_norm": 0.11279296875,
2062
+ "learning_rate": 7.916468158204576e-05,
2063
+ "loss": 0.0717,
2064
+ "step": 273
2065
+ },
2066
+ {
2067
+ "epoch": 1.731779577325696,
2068
+ "grad_norm": 0.1064453125,
2069
+ "learning_rate": 7.85029559788976e-05,
2070
+ "loss": 0.0719,
2071
+ "step": 274
2072
+ },
2073
+ {
2074
+ "epoch": 1.738099940746593,
2075
+ "grad_norm": 0.10302734375,
2076
+ "learning_rate": 7.784221583999298e-05,
2077
+ "loss": 0.064,
2078
+ "step": 275
2079
+ },
2080
+ {
2081
+ "epoch": 1.7444203041674897,
2082
+ "grad_norm": 0.09765625,
2083
+ "learning_rate": 7.718249145488142e-05,
2084
+ "loss": 0.0589,
2085
+ "step": 276
2086
+ },
2087
+ {
2088
+ "epoch": 1.7507406675883863,
2089
+ "grad_norm": 0.1064453125,
2090
+ "learning_rate": 7.652381306654851e-05,
2091
+ "loss": 0.0717,
2092
+ "step": 277
2093
+ },
2094
+ {
2095
+ "epoch": 1.757061031009283,
2096
+ "grad_norm": 0.0908203125,
2097
+ "learning_rate": 7.586621087002945e-05,
2098
+ "loss": 0.052,
2099
+ "step": 278
2100
+ },
2101
+ {
2102
+ "epoch": 1.7633813944301797,
2103
+ "grad_norm": 0.0947265625,
2104
+ "learning_rate": 7.520971501102469e-05,
2105
+ "loss": 0.0553,
2106
+ "step": 279
2107
+ },
2108
+ {
2109
+ "epoch": 1.7697017578510765,
2110
+ "grad_norm": 0.11181640625,
2111
+ "learning_rate": 7.455435558451823e-05,
2112
+ "loss": 0.0703,
2113
+ "step": 280
2114
+ },
2115
+ {
2116
+ "epoch": 1.7760221212719731,
2117
+ "grad_norm": 0.10546875,
2118
+ "learning_rate": 7.390016263339782e-05,
2119
+ "loss": 0.0644,
2120
+ "step": 281
2121
+ },
2122
+ {
2123
+ "epoch": 1.7823424846928697,
2124
+ "grad_norm": 0.103515625,
2125
+ "learning_rate": 7.324716614707793e-05,
2126
+ "loss": 0.0646,
2127
+ "step": 282
2128
+ },
2129
+ {
2130
+ "epoch": 1.7886628481137665,
2131
+ "grad_norm": 0.09912109375,
2132
+ "learning_rate": 7.259539606012478e-05,
2133
+ "loss": 0.0549,
2134
+ "step": 283
2135
+ },
2136
+ {
2137
+ "epoch": 1.7949832115346633,
2138
+ "grad_norm": 0.11474609375,
2139
+ "learning_rate": 7.194488225088417e-05,
2140
+ "loss": 0.0675,
2141
+ "step": 284
2142
+ },
2143
+ {
2144
+ "epoch": 1.80130357495556,
2145
+ "grad_norm": 0.12451171875,
2146
+ "learning_rate": 7.129565454011189e-05,
2147
+ "loss": 0.0788,
2148
+ "step": 285
2149
+ },
2150
+ {
2151
+ "epoch": 1.8076239383764565,
2152
+ "grad_norm": 0.119140625,
2153
+ "learning_rate": 7.064774268960653e-05,
2154
+ "loss": 0.0845,
2155
+ "step": 286
2156
+ },
2157
+ {
2158
+ "epoch": 1.8139443017973533,
2159
+ "grad_norm": 0.10693359375,
2160
+ "learning_rate": 7.000117640084526e-05,
2161
+ "loss": 0.064,
2162
+ "step": 287
2163
+ },
2164
+ {
2165
+ "epoch": 1.8202646652182501,
2166
+ "grad_norm": 0.115234375,
2167
+ "learning_rate": 6.93559853136221e-05,
2168
+ "loss": 0.073,
2169
+ "step": 288
2170
+ },
2171
+ {
2172
+ "epoch": 1.8202646652182501,
2173
+ "eval_loss": 0.0876438096165657,
2174
+ "eval_runtime": 54.5873,
2175
+ "eval_samples_per_second": 19.528,
2176
+ "eval_steps_per_second": 19.528,
2177
+ "step": 288
2178
+ },
2179
+ {
2180
+ "epoch": 1.8265850286391467,
2181
+ "grad_norm": 0.1044921875,
2182
+ "learning_rate": 6.871219900468947e-05,
2183
+ "loss": 0.0623,
2184
+ "step": 289
2185
+ },
2186
+ {
2187
+ "epoch": 1.8329053920600433,
2188
+ "grad_norm": 0.10205078125,
2189
+ "learning_rate": 6.806984698640202e-05,
2190
+ "loss": 0.0584,
2191
+ "step": 290
2192
+ },
2193
+ {
2194
+ "epoch": 1.8392257554809401,
2195
+ "grad_norm": 0.10400390625,
2196
+ "learning_rate": 6.742895870536388e-05,
2197
+ "loss": 0.0632,
2198
+ "step": 291
2199
+ },
2200
+ {
2201
+ "epoch": 1.845546118901837,
2202
+ "grad_norm": 0.09912109375,
2203
+ "learning_rate": 6.678956354107882e-05,
2204
+ "loss": 0.0611,
2205
+ "step": 292
2206
+ },
2207
+ {
2208
+ "epoch": 1.8518664823227335,
2209
+ "grad_norm": 0.10791015625,
2210
+ "learning_rate": 6.615169080460331e-05,
2211
+ "loss": 0.0623,
2212
+ "step": 293
2213
+ },
2214
+ {
2215
+ "epoch": 1.8581868457436301,
2216
+ "grad_norm": 0.09130859375,
2217
+ "learning_rate": 6.551536973720298e-05,
2218
+ "loss": 0.0558,
2219
+ "step": 294
2220
+ },
2221
+ {
2222
+ "epoch": 1.864507209164527,
2223
+ "grad_norm": 0.09814453125,
2224
+ "learning_rate": 6.488062950901198e-05,
2225
+ "loss": 0.0548,
2226
+ "step": 295
2227
+ },
2228
+ {
2229
+ "epoch": 1.8708275725854238,
2230
+ "grad_norm": 0.1064453125,
2231
+ "learning_rate": 6.4247499217696e-05,
2232
+ "loss": 0.07,
2233
+ "step": 296
2234
+ },
2235
+ {
2236
+ "epoch": 1.8771479360063204,
2237
+ "grad_norm": 0.09716796875,
2238
+ "learning_rate": 6.361600788711816e-05,
2239
+ "loss": 0.0584,
2240
+ "step": 297
2241
+ },
2242
+ {
2243
+ "epoch": 1.883468299427217,
2244
+ "grad_norm": 0.10400390625,
2245
+ "learning_rate": 6.298618446600856e-05,
2246
+ "loss": 0.0602,
2247
+ "step": 298
2248
+ },
2249
+ {
2250
+ "epoch": 1.8897886628481138,
2251
+ "grad_norm": 0.09716796875,
2252
+ "learning_rate": 6.23580578266374e-05,
2253
+ "loss": 0.0554,
2254
+ "step": 299
2255
+ },
2256
+ {
2257
+ "epoch": 1.8961090262690106,
2258
+ "grad_norm": 0.10546875,
2259
+ "learning_rate": 6.173165676349103e-05,
2260
+ "loss": 0.0649,
2261
+ "step": 300
2262
+ },
2263
+ {
2264
+ "epoch": 1.9024293896899072,
2265
+ "grad_norm": 0.11181640625,
2266
+ "learning_rate": 6.11070099919524e-05,
2267
+ "loss": 0.0689,
2268
+ "step": 301
2269
+ },
2270
+ {
2271
+ "epoch": 1.9087497531108037,
2272
+ "grad_norm": 0.11328125,
2273
+ "learning_rate": 6.048414614698448e-05,
2274
+ "loss": 0.079,
2275
+ "step": 302
2276
+ },
2277
+ {
2278
+ "epoch": 1.9150701165317006,
2279
+ "grad_norm": 0.1162109375,
2280
+ "learning_rate": 5.9863093781817394e-05,
2281
+ "loss": 0.0692,
2282
+ "step": 303
2283
+ },
2284
+ {
2285
+ "epoch": 1.9213904799525974,
2286
+ "grad_norm": 0.09228515625,
2287
+ "learning_rate": 5.924388136663992e-05,
2288
+ "loss": 0.0543,
2289
+ "step": 304
2290
+ },
2291
+ {
2292
+ "epoch": 1.9213904799525974,
2293
+ "eval_loss": 0.08687648177146912,
2294
+ "eval_runtime": 54.6209,
2295
+ "eval_samples_per_second": 19.516,
2296
+ "eval_steps_per_second": 19.516,
2297
+ "step": 304
2298
+ },
2299
+ {
2300
+ "epoch": 1.927710843373494,
2301
+ "grad_norm": 0.10107421875,
2302
+ "learning_rate": 5.862653728729397e-05,
2303
+ "loss": 0.0548,
2304
+ "step": 305
2305
+ },
2306
+ {
2307
+ "epoch": 1.9340312067943906,
2308
+ "grad_norm": 0.09619140625,
2309
+ "learning_rate": 5.801108984397354e-05,
2310
+ "loss": 0.0491,
2311
+ "step": 306
2312
+ },
2313
+ {
2314
+ "epoch": 1.9403515702152874,
2315
+ "grad_norm": 0.095703125,
2316
+ "learning_rate": 5.739756724992736e-05,
2317
+ "loss": 0.052,
2318
+ "step": 307
2319
+ },
2320
+ {
2321
+ "epoch": 1.9466719336361842,
2322
+ "grad_norm": 0.10400390625,
2323
+ "learning_rate": 5.6785997630165435e-05,
2324
+ "loss": 0.0704,
2325
+ "step": 308
2326
+ },
2327
+ {
2328
+ "epoch": 1.9529922970570808,
2329
+ "grad_norm": 0.10595703125,
2330
+ "learning_rate": 5.61764090201699e-05,
2331
+ "loss": 0.0694,
2332
+ "step": 309
2333
+ },
2334
+ {
2335
+ "epoch": 1.9593126604779774,
2336
+ "grad_norm": 0.115234375,
2337
+ "learning_rate": 5.5568829364609664e-05,
2338
+ "loss": 0.0747,
2339
+ "step": 310
2340
+ },
2341
+ {
2342
+ "epoch": 1.9656330238988742,
2343
+ "grad_norm": 0.1005859375,
2344
+ "learning_rate": 5.4963286516059496e-05,
2345
+ "loss": 0.0579,
2346
+ "step": 311
2347
+ },
2348
+ {
2349
+ "epoch": 1.971953387319771,
2350
+ "grad_norm": 0.09814453125,
2351
+ "learning_rate": 5.435980823372311e-05,
2352
+ "loss": 0.057,
2353
+ "step": 312
2354
+ },
2355
+ {
2356
+ "epoch": 1.9782737507406676,
2357
+ "grad_norm": 0.10205078125,
2358
+ "learning_rate": 5.375842218216076e-05,
2359
+ "loss": 0.0635,
2360
+ "step": 313
2361
+ },
2362
+ {
2363
+ "epoch": 1.9845941141615642,
2364
+ "grad_norm": 0.10205078125,
2365
+ "learning_rate": 5.3159155930021e-05,
2366
+ "loss": 0.0592,
2367
+ "step": 314
2368
+ },
2369
+ {
2370
+ "epoch": 1.990914477582461,
2371
+ "grad_norm": 0.09326171875,
2372
+ "learning_rate": 5.25620369487767e-05,
2373
+ "loss": 0.0571,
2374
+ "step": 315
2375
+ },
2376
+ {
2377
+ "epoch": 1.9972348410033578,
2378
+ "grad_norm": 0.09228515625,
2379
+ "learning_rate": 5.196709261146606e-05,
2380
+ "loss": 0.0499,
2381
+ "step": 316
2382
+ }
2383
+ ],
2384
+ "logging_steps": 1,
2385
+ "max_steps": 474,
2386
+ "num_input_tokens_seen": 0,
2387
+ "num_train_epochs": 3,
2388
+ "save_steps": 79,
2389
+ "stateful_callbacks": {
2390
+ "TrainerControl": {
2391
+ "args": {
2392
+ "should_epoch_stop": false,
2393
+ "should_evaluate": false,
2394
+ "should_log": false,
2395
+ "should_save": true,
2396
+ "should_training_stop": false
2397
+ },
2398
+ "attributes": {}
2399
+ }
2400
+ },
2401
+ "total_flos": 5.3848757417312256e+17,
2402
+ "train_batch_size": 1,
2403
+ "trial_name": null,
2404
+ "trial_params": null
2405
+ }
checkpoint-316/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:136a7ee0a77597b848c5de059bd51390aca154d1a50fcf9952331e4f999461f1
3
+ size 6008
checkpoint-316/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-395/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2-7B-Instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-395/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2-7B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 128,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "gate_proj",
24
+ "k_proj",
25
+ "v_proj",
26
+ "up_proj",
27
+ "q_proj",
28
+ "down_proj",
29
+ "o_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-395/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebbdc5f217771b6d15477c82a7ccbdff856c85a71e0d1b9e028f14e393f999d9
3
+ size 323014560