Update README.md
Browse files
README.md
CHANGED
@@ -34,7 +34,7 @@ Then you can use the model like this:
|
|
34 |
from sentence_transformers import SentenceTransformer
|
35 |
sentences = ["Una ragazza si acconcia i capelli.", "Una ragazza si sta spazzolando i capelli."]
|
36 |
|
37 |
-
model = SentenceTransformer('nickprock/sentence-bert-base-italian-xxl-
|
38 |
embeddings = model.encode(sentences)
|
39 |
print(embeddings)
|
40 |
```
|
@@ -60,8 +60,8 @@ def mean_pooling(model_output, attention_mask):
|
|
60 |
sentences = ['Una ragazza si acconcia i capelli.', 'Una ragazza si sta spazzolando i capelli.']
|
61 |
|
62 |
# Load model from HuggingFace Hub
|
63 |
-
tokenizer = AutoTokenizer.from_pretrained('nickprock/sentence-bert-base-italian-xxl-
|
64 |
-
model = AutoModel.from_pretrained('nickprock/sentence-bert-base-italian-xxl-
|
65 |
|
66 |
# Tokenize sentences
|
67 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
34 |
from sentence_transformers import SentenceTransformer
|
35 |
sentences = ["Una ragazza si acconcia i capelli.", "Una ragazza si sta spazzolando i capelli."]
|
36 |
|
37 |
+
model = SentenceTransformer('nickprock/sentence-bert-base-italian-xxl-uncased')
|
38 |
embeddings = model.encode(sentences)
|
39 |
print(embeddings)
|
40 |
```
|
|
|
60 |
sentences = ['Una ragazza si acconcia i capelli.', 'Una ragazza si sta spazzolando i capelli.']
|
61 |
|
62 |
# Load model from HuggingFace Hub
|
63 |
+
tokenizer = AutoTokenizer.from_pretrained('nickprock/sentence-bert-base-italian-xxl-uncased')
|
64 |
+
model = AutoModel.from_pretrained('nickprock/sentence-bert-base-italian-xxl-uncased')
|
65 |
|
66 |
# Tokenize sentences
|
67 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|