nikitakapitan commited on
Commit
e966ae4
1 Parent(s): 3131e43

End of training

Browse files
Files changed (1) hide show
  1. README.md +14 -8
README.md CHANGED
@@ -7,6 +7,7 @@ datasets:
7
  - emotion
8
  metrics:
9
  - accuracy
 
10
  model-index:
11
  - name: bert-base-uncased-finetuned-emotion
12
  results:
@@ -23,7 +24,11 @@ model-index:
23
  - name: Accuracy
24
  type: accuracy
25
  value:
26
- accuracy: 0.9385
 
 
 
 
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -33,8 +38,9 @@ should probably proofread and complete it, then remove this comment. -->
33
 
34
  This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the emotion dataset.
35
  It achieves the following results on the evaluation set:
36
- - Loss: 0.1772
37
- - Accuracy: {'accuracy': 0.9385}
 
38
 
39
  ## Model description
40
 
@@ -63,11 +69,11 @@ The following hyperparameters were used during training:
63
 
64
  ### Training results
65
 
66
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
- |:-------------:|:-----:|:----:|:---------------:|:--------------------:|
68
- | 0.2449 | 1.0 | 1000 | 0.1787 | {'accuracy': 0.9355} |
69
- | 0.1425 | 2.0 | 2000 | 0.1780 | {'accuracy': 0.9355} |
70
- | 0.092 | 3.0 | 3000 | 0.1772 | {'accuracy': 0.9385} |
71
 
72
 
73
  ### Framework versions
 
7
  - emotion
8
  metrics:
9
  - accuracy
10
+ - f1
11
  model-index:
12
  - name: bert-base-uncased-finetuned-emotion
13
  results:
 
24
  - name: Accuracy
25
  type: accuracy
26
  value:
27
+ accuracy: 0.9355
28
+ - name: F1
29
+ type: f1
30
+ value:
31
+ f1: 0.935388774713548
32
  ---
33
 
34
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
38
 
39
  This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the emotion dataset.
40
  It achieves the following results on the evaluation set:
41
+ - Loss: 0.1651
42
+ - Accuracy: {'accuracy': 0.9355}
43
+ - F1: {'f1': 0.935388774713548}
44
 
45
  ## Model description
46
 
 
69
 
70
  ### Training results
71
 
72
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
73
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------:|:--------------------------:|
74
+ | 0.2519 | 1.0 | 1000 | 0.1878 | {'accuracy': 0.9325} | {'f1': 0.9323540471733189} |
75
+ | 0.1434 | 2.0 | 2000 | 0.1799 | {'accuracy': 0.9335} | {'f1': 0.9341179573678701} |
76
+ | 0.0907 | 3.0 | 3000 | 0.1651 | {'accuracy': 0.9355} | {'f1': 0.935388774713548} |
77
 
78
 
79
  ### Framework versions