File size: 1,545 Bytes
0ef9137 8cb7f20 0ef9137 8cb7f20 0ef9137 524aad8 5be0acc 8cb7f20 0ef9137 524aad8 0ef9137 524aad8 0ef9137 524aad8 0ef9137 640d099 524aad8 640d099 0ef9137 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
tags:
- generated_from_trainer
datasets:
- roneneldan/TinyStories
metrics:
- accuracy
model-index:
- name: mistral-1L-tiny
results:
- task:
name: Causal Language Modeling
type: text-generation
dataset:
name: roneneldan/TinyStories
type: roneneldan/TinyStories
metrics:
- name: Accuracy
type: accuracy
value: 0.5792084706530948
---
# mistral-1L-tiny
A tiny single-layer 35.1M parameter Mistral model, with a hidden size of 512, and an MLP intermediate size of 1024.
This model is trained on the roneneldan/TinyStories dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6868
- Accuracy: 0.5792
## Model description
This work is inspired by the 21M parameter one-layer GPT-Neo of the [Tiny Stories paper](https://arxiv.org/abs/2305.07759).
Results reproduced to acquire high-frequency checkpoints for further analysis.
## Intended uses & limitations
Analysis of feature dynamics and emergence in real-world language models.
## Training procedure
Trained for 90171 steps, corresponding to ~2 hours on a single H100.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0006
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 3.0
### Training results
Quite consistent English text generation.
### Framework versions
- Transformers 4.38.1
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2
|