update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: gpt_16_5_5.6e-5_lp5_nb10
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# gpt_16_5_5.6e-5_lp5_nb10
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [skt/kogpt2-base-v2](https://huggingface.co/skt/kogpt2-base-v2) on an unknown dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 4.0126
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 5.6e-05
|
37 |
+
- train_batch_size: 16
|
38 |
+
- eval_batch_size: 16
|
39 |
+
- seed: 42
|
40 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
41 |
+
- lr_scheduler_type: linear
|
42 |
+
- lr_scheduler_warmup_ratio: 0.1
|
43 |
+
- num_epochs: 5.0
|
44 |
+
- mixed_precision_training: Native AMP
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
49 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
50 |
+
| 3.1407 | 0.38 | 1000 | 4.0864 |
|
51 |
+
| 3.1639 | 0.76 | 2000 | 4.0867 |
|
52 |
+
| 2.87 | 1.13 | 3000 | 4.0611 |
|
53 |
+
| 2.8591 | 1.51 | 4000 | 4.0315 |
|
54 |
+
| 2.8866 | 1.89 | 5000 | 4.0079 |
|
55 |
+
| 2.6146 | 2.27 | 6000 | 4.0153 |
|
56 |
+
| 2.6576 | 2.64 | 7000 | 4.0021 |
|
57 |
+
| 2.5361 | 3.02 | 8000 | 4.0106 |
|
58 |
+
| 2.4552 | 3.4 | 9000 | 4.0137 |
|
59 |
+
| 2.4595 | 3.78 | 10000 | 3.9967 |
|
60 |
+
| 2.3286 | 4.15 | 11000 | 4.0204 |
|
61 |
+
| 2.2805 | 4.53 | 12000 | 4.0154 |
|
62 |
+
| 2.3098 | 4.91 | 13000 | 4.0126 |
|
63 |
+
|
64 |
+
|
65 |
+
### Framework versions
|
66 |
+
|
67 |
+
- Transformers 4.25.1
|
68 |
+
- Pytorch 1.9.0+cu102
|
69 |
+
- Datasets 2.8.0
|
70 |
+
- Tokenizers 0.13.2
|