--- tags: - generated_from_keras_callback - dpr license: apache-2.0 model-index: - name: dpr-ctx_encoder_bert_uncased_L-12_H-128_A-2 results: [] --- # dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2 This model(google/bert_uncased_L-2_H-128_A-2) was trained from scratch on training data: data.retriever.nq-adv-hn-train(facebookresearch/DPR). It achieves the following results on the evaluation set: ## Evaluation data evaluation dataset: facebook-dpr-dev-dataset from official DPR github |model_name|data_name|num of queries|num of passages|R@10|R@20|R@50|R@100|R@100| |---|---|---|---|---|---|---|---|---| |nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2(our)|nq-dev dataset|6445|199795|60.53%|68.28%|76.07%|80.98%|91.45%| |nlpconnect/dpr-ctx_encoder_bert_uncased_L-12_H-128_A-2(our)|nq-dev dataset|6445|199795|65.43%|71.99%|79.03%|83.24%|92.11%| |*facebook/dpr-ctx_encoder-single-nq-base(hf/fb)|nq-dev dataset|6445|199795|40.94%|49.27%|59.05%|66.00%|82.00%| evaluation dataset: UKPLab/beir test data but we have used first 2lac passage only. |model_name|data_name|num of queries|num of passages|R@10|R@20|R@50|R@100|R@100| |---|---|---|---|---|---|---|---|---| |nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2(our)|nq-test dataset|3452|200001|49.68%|59.06%|69.40%|75.75%|89.28%| |nlpconnect/dpr-ctx_encoder_bert_uncased_L-12_H-128_A-2(our)|nq-test dataset|3452|200001|51.62%|61.09%|70.10%|76.07%|88.70%| |*facebook/dpr-ctx_encoder-single-nq-base(hf/fb)|nq-test dataset|3452|200001|32.93%|43.74%|56.95%|66.30%|83.92%| Note: * means we have evaluated on same eval dataset. ### Usage (HuggingFace Transformers) ```python passage_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-12_H-128_A-2") query_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-12_H-128_A-2") p_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-12_H-128_A-2") q_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-12_H-128_A-2") def get_title_text_combined(passage_dicts): res = [] for p in passage_dicts: res.append(tuple((p['title'], p['text']))) return res processed_passages = get_title_text_combined(passage_dicts) def extracted_passage_embeddings(processed_passages, model_config): passage_inputs = tokenizer.batch_encode_plus( processed_passages, add_special_tokens=True, truncation=True, padding="max_length", max_length=model_config.passage_max_seq_len, return_token_type_ids=True ) passage_embeddings = passage_encoder.predict([np.array(passage_inputs['input_ids']), np.array(passage_inputs['attention_mask']), np.array(passage_inputs['token_type_ids'])], batch_size=512, verbose=1) return passage_embeddings passage_embeddings = extracted_passage_embeddings(processed_passages, model_config) def extracted_query_embeddings(queries, model_config): query_inputs = tokenizer.batch_encode_plus( queries, add_special_tokens=True, truncation=True, padding="max_length", max_length=model_config.query_max_seq_len, return_token_type_ids=True ) query_embeddings = query_encoder.predict([np.array(query_inputs['input_ids']), np.array(query_inputs['attention_mask']), np.array(query_inputs['token_type_ids'])], batch_size=512, verbose=1) return query_embeddings query_embeddings = extracted_query_embeddings(queries, model_config) ``` ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Framework versions - Transformers 4.15.0 - TensorFlow 2.7.0 - Tokenizers 0.10.3