mgoin commited on
Commit
1bedfcf
1 Parent(s): 1c1f901

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -1
README.md CHANGED
@@ -1,4 +1,35 @@
1
  ---
2
  base_model:
3
  - openbmb/MiniCPM-V-2_6
4
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  base_model:
3
  - openbmb/MiniCPM-V-2_6
4
+ ---
5
+
6
+ ## Creation
7
+
8
+ ```python
9
+ from transformers import AutoProcessor, AutoModelForCausalLM
10
+
11
+ from llmcompressor.modifiers.quantization import QuantizationModifier
12
+ from llmcompressor.transformers import oneshot, wrap_hf_model_class
13
+
14
+ MODEL_ID = "openbmb/MiniCPM-V-2_6"
15
+
16
+ # Load model.
17
+ model_class = wrap_hf_model_class(AutoModelForCausalLM)
18
+ model = model_class.from_pretrained(MODEL_ID, torch_dtype="auto", trust_remote_code=True).to("cuda")
19
+ processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
20
+
21
+ # Configure the quantization algorithm and scheme.
22
+ # In this case, we:
23
+ # * quantize the weights to fp8 with per channel via ptq
24
+ # * quantize the activations to fp8 with dynamic per token
25
+ recipe = QuantizationModifier(
26
+ targets="Linear",
27
+ scheme="FP8_DYNAMIC",
28
+ ignore=["re:.*lm_head", "re:resampler.*", "re:vpm.*"],
29
+ )
30
+
31
+ # Apply quantization and save to disk in compressed-tensors format.
32
+ SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-dynamic"
33
+ oneshot(model=model, recipe=recipe, output_dir=SAVE_DIR, trust_remote_code_model=True)
34
+ processor.save_pretrained(SAVE_DIR)
35
+ ```