--- base_model: - openbmb/MiniCPM-V-2_6 --- ## Creation ```python from transformers import AutoProcessor, AutoModelForCausalLM from llmcompressor.modifiers.quantization import QuantizationModifier from llmcompressor.transformers import oneshot, wrap_hf_model_class MODEL_ID = "openbmb/MiniCPM-V-2_6" # Load model. model_class = wrap_hf_model_class(AutoModelForCausalLM) model = model_class.from_pretrained(MODEL_ID, torch_dtype="auto", trust_remote_code=True).to("cuda") processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) # Configure the quantization algorithm and scheme. # In this case, we: # * quantize the weights to fp8 with per channel via ptq # * quantize the activations to fp8 with dynamic per token recipe = QuantizationModifier( targets="Linear", scheme="FP8_DYNAMIC", ignore=["re:.*lm_head", "re:resampler.*", "re:vpm.*"], ) # Apply quantization and save to disk in compressed-tensors format. SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-dynamic" oneshot(model=model, recipe=recipe, output_dir=SAVE_DIR, trust_remote_code_model=True) processor.save_pretrained(SAVE_DIR) ```