Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
## Creation
|
3 |
+
|
4 |
+
```python
|
5 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
6 |
+
|
7 |
+
from llmcompressor.modifiers.quantization import QuantizationModifier
|
8 |
+
from llmcompressor.transformers import oneshot, wrap_hf_model_class
|
9 |
+
|
10 |
+
MODEL_ID = "microsoft/Phi-3.5-vision-instruct"
|
11 |
+
|
12 |
+
# Load model.
|
13 |
+
model_class = wrap_hf_model_class(AutoModelForCausalLM)
|
14 |
+
model = model_class.from_pretrained(MODEL_ID, device_map="auto", torch_dtype="auto", trust_remote_code=True, _attn_implementation="eager")
|
15 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
16 |
+
|
17 |
+
# Configure the quantization algorithm and scheme.
|
18 |
+
# In this case, we:
|
19 |
+
# * quantize the weights to fp8 with per channel via ptq
|
20 |
+
# * quantize the activations to fp8 with dynamic per token
|
21 |
+
recipe = QuantizationModifier(
|
22 |
+
targets="Linear",
|
23 |
+
scheme="FP8_DYNAMIC",
|
24 |
+
ignore=["re:.*lm_head", "re:model.vision_embed_tokens.*"],
|
25 |
+
)
|
26 |
+
|
27 |
+
# Apply quantization and save to disk in compressed-tensors format.
|
28 |
+
SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-Dynamic"
|
29 |
+
oneshot(model=model, recipe=recipe, output_dir=SAVE_DIR)
|
30 |
+
processor.save_pretrained(SAVE_DIR)
|
31 |
+
|
32 |
+
# Confirm generations of the quantized model look sane.
|
33 |
+
print("========== SAMPLE GENERATION ==============")
|
34 |
+
input_ids = processor(text="Hello my name is", return_tensors="pt").input_ids.to("cuda")
|
35 |
+
output = model.generate(input_ids, max_new_tokens=20)
|
36 |
+
print(processor.decode(output[0]))
|
37 |
+
print("==========================================")
|
38 |
+
```
|