--- base_model: - microsoft/Phi-3.5-vision-instruct --- ## Creation ```python from transformers import AutoProcessor, AutoModelForCausalLM from llmcompressor.modifiers.quantization import QuantizationModifier from llmcompressor.transformers import oneshot, wrap_hf_model_class MODEL_ID = "microsoft/Phi-3.5-vision-instruct" # Load model. model_class = wrap_hf_model_class(AutoModelForCausalLM) model = model_class.from_pretrained(MODEL_ID, device_map="auto", torch_dtype="auto", trust_remote_code=True, _attn_implementation="eager") processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) # Configure the quantization algorithm and scheme. # In this case, we: # * quantize the weights to fp8 with per channel via ptq # * quantize the activations to fp8 with dynamic per token recipe = QuantizationModifier( targets="Linear", scheme="FP8_DYNAMIC", ignore=["re:.*lm_head", "re:model.vision_embed_tokens.*"], ) # Apply quantization and save to disk in compressed-tensors format. SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-Dynamic" oneshot(model=model, recipe=recipe, output_dir=SAVE_DIR) processor.save_pretrained(SAVE_DIR) ```