File size: 5,653 Bytes
47f6973
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
---
language:
- en
pipeline_tag: text-generation
license: apache-2.0
---

# SmolLM-135M-Instruct-quantized.w4a16

## Model Overview
- **Model Architecture:** SmolLM-135M-Instruct
  - **Input:** Text
  - **Output:** Text
- **Model Optimizations:**
  - **Weight quantization:** INT4
- **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [SmolLM-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-135M), this models is intended for assistant-like chat.
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
- **Release Date:** 8/23/2024
- **Version:** 1.0
- **License(s)**: [Apache-2.0](https://www.apache.org/licenses/LICENSE-2.0)
- **Model Developers:** Neural Magic

Quantized version of [SmolLM-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-135M).
It achieves an average score of 31.91 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 31.55.

### Model Optimizations

This model was obtained by quantizing the weights of [SmolLM-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-135M) to INT4 data type.
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%.

Only the weights of the linear operators within transformers blocks are quantized. Symmetric group-wise quantization is applied, in which a linear scaling per group maps the INT4 and floating point representations of the quantized weights.
The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library. Quantization is performed with 10% damping factor, group-size as 64 and 512 sequences sampled from [LLM Compression Calibration](https://huggingface.co/datasets/neuralmagic/LLM_compression_calibration).

## Creation

This model was created by using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as presented in the code snipet below.

```python
from transformers import AutoTokenizer
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
from llmcompressor.modifiers.quantization import GPTQModifier
from compressed_tensors.quantization import QuantizationArgs, QuantizationType, QuantizationStrategy
from datasets import load_dataset
import random

model_id = "HuggingFaceTB/SmolLM-135M-Instruct"


num_samples = 512
max_seq_len = 4096

tokenizer = AutoTokenizer.from_pretrained(model_id)

preprocess_fn = lambda example: {"text": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n{text}".format_map(example)}

dataset_name = "neuralmagic/LLM_compression_calibration"
dataset = load_dataset(dataset_name, split="train")
ds = dataset.shuffle().select(range(num_samples))
ds = ds.map(preprocess_fn)

examples = [
    tokenizer(
        example["text"], padding=False, max_length=max_seq_len, truncation=True,
    ) for example in ds
]

# recipe = "w4a16_nohead_recipe.yaml"
recipe = GPTQModifier(
  targets="Linear",
  scheme="W4A16",
  ignore=["lm_head"],
  dampening_frac=0.1,
)


model = SparseAutoModelForCausalLM.from_pretrained(
  model_id,
  device_map="auto",
  trust_remote_code=True
)

print(model)

oneshot(
  model=model,
  dataset=ds,
  recipe=recipe,
  max_seq_length=max_seq_len,
  num_calibration_samples=num_samples,
  oneshot_device="cuda:1,2,3",
)

model_name = model_id.split("/")[-1]

model.save_pretrained(f"{model_name}-quantized.w4a16")
tokenizer.save_pretrained(f"{model_name}-quantized.w4a16")

```


## Evaluation

The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [sparseML](https://github.com/neuralmagic/sparseml) engine, using the following command:
```
lm_eval \
  --model sparseml \
  --model_args pretrained=nm-testing/SmolLM-1.7B-Instruct-quantized.w4a16,dtype=bfloat16,max_legth=2048,add_bos_token=True,parallelize=True \
  --tasks openllm \
  --batch_size auto
```

### Accuracy

#### Open LLM Leaderboard evaluation scores
<table>
  <tr>
   <td><strong>Benchmark</strong>
   </td>
   <td><strong>SmolLM-135M-Instruct </strong>
   </td>
   <td><strong>SmolLM-135M-Instruct-quantized.w4a16(this model)</strong>
   </td>
   <td><strong>Recovery</strong>
   </td>
  </tr>
  <tr>
   <td>MMLU (5-shot)
   </td>
   <td>26.220
   </td>
   <td>25.202
   </td>
   <td>96.12%
   </td>
  </tr>
  <tr>
   <td>ARC Challenge (25-shot)
   </td>
   <td>29.948
   </td>
   <td>30.034
   </td>
   <td>100.29%
   </td>
  </tr>
  <tr>
   <td>GSM-8K (5-shot, strict-match)
   </td>
   <td>1.289
   </td>
   <td>1.971
   </td>
   <td>152.91%
   </td>
  </tr>
  <tr>
   <td>Hellaswag (10-shot)
   </td>
   <td>41.41
   </td>
   <td>40.81
   </td>
   <td>98.55%
   </td>
  </tr>
  <tr>
   <td>Winogrande (5-shot)
   </td>
   <td>50.039
   </td>
   <td>53.591
   </td>
   <td>107.10%
   </td>
  </tr>
  <tr>
   <td>TruthfulQA (0-shot)
   </td>
   <td>40.38
   </td>
   <td>39.87
   </td>
   <td>98.74%
   </td>
  </tr>
  <tr>
   <td><strong>Average</strong>
   </td>
   <td><strong>31.55</strong>
   </td>
   <td><strong>31.91</strong>
   </td>
   <td><strong>101.16%</strong>
   </td>
  </tr>
</table>