--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: whisper_finetune results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: hi split: test args: hi metrics: - name: Wer type: wer value: 12.981869792143577 --- # whisper_finetune This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2306 - Wer: 12.9819 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.218 | 0.2 | 1000 | 0.2970 | 20.1538 | | 0.1537 | 0.4 | 2000 | 0.2573 | 17.2535 | | 0.0802 | 1.16 | 3000 | 0.2392 | 14.2798 | | 0.0521 | 1.36 | 4000 | 0.2263 | 13.7144 | | 0.0135 | 2.13 | 5000 | 0.2306 | 12.9819 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2