Upload folder using huggingface_hub
Browse files- config.json +24 -0
- convert_weight.py +81 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +2 -0
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"MistralForCausalLM"
|
4 |
+
],
|
5 |
+
"bos_token_id": 1,
|
6 |
+
"eos_token_id": 2,
|
7 |
+
"hidden_act": "silu",
|
8 |
+
"hidden_size": 4096,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"intermediate_size": 14336,
|
11 |
+
"max_position_embeddings": 2048,
|
12 |
+
"model_type": "mistral",
|
13 |
+
"num_attention_heads": 32,
|
14 |
+
"num_hidden_layers": 32,
|
15 |
+
"num_key_value_heads": 8,
|
16 |
+
"rms_norm_eps": 1e-05,
|
17 |
+
"rope_theta": 10000.0,
|
18 |
+
"sliding_window": 2048,
|
19 |
+
"tie_word_embeddings": false,
|
20 |
+
"torch_dtype": "bfloat16",
|
21 |
+
"transformers_version": "4.34.0.dev0",
|
22 |
+
"use_cache": true,
|
23 |
+
"vocab_size": 32768
|
24 |
+
}
|
convert_weight.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from tqdm import tqdm
|
3 |
+
|
4 |
+
|
5 |
+
input_dir_path = "/scratch/project_462000086/norwegian_gpt/Megatron-DeepSpeed-fixed/mistral-7b-from-scratch-2nd-run/global_step30000"
|
6 |
+
output_dir_path = "/scratch/project_462000086/norwegian_gpt/Megatron-DeepSpeed-fixed/hf_mistral_from_scratch_60k"
|
7 |
+
|
8 |
+
n_hidden = 4096
|
9 |
+
n_ffn_hidden = 14336
|
10 |
+
n_heads = 32
|
11 |
+
n_kv_heads = 8
|
12 |
+
n_layers = 32
|
13 |
+
n_tp = 2
|
14 |
+
|
15 |
+
|
16 |
+
weights = {}
|
17 |
+
|
18 |
+
# embedding
|
19 |
+
embedding_weights = []
|
20 |
+
for i in range(n_tp):
|
21 |
+
path = f"{input_dir_path}/layer_01-model_0{i}-model_states.pt"
|
22 |
+
checkpoint = torch.load(path)
|
23 |
+
|
24 |
+
embedding_weights.append(checkpoint["word_embeddings.weight"].bfloat16())
|
25 |
+
|
26 |
+
weights[f"model.embed_tokens.weight"] = torch.cat(embedding_weights, dim=0)
|
27 |
+
del embedding_weights
|
28 |
+
|
29 |
+
lm_head_weights = []
|
30 |
+
for i in range(n_tp):
|
31 |
+
path = f"{input_dir_path}/layer_{n_layers + 5}-model_0{i}-model_states.pt"
|
32 |
+
checkpoint = torch.load(path)
|
33 |
+
|
34 |
+
lm_head_weights.append(checkpoint["lm_head.weight"].bfloat16())
|
35 |
+
|
36 |
+
weights[f"lm_head.weight"] = torch.cat(lm_head_weights, dim=0)
|
37 |
+
del lm_head_weights
|
38 |
+
|
39 |
+
|
40 |
+
# transformer layers
|
41 |
+
for layer in tqdm(range(n_layers)):
|
42 |
+
q_weights, k_weights, v_weights, o_weights = [], [], [], []
|
43 |
+
up_weights, gate_weights, down_weights = [], [], []
|
44 |
+
|
45 |
+
for i in range(n_tp):
|
46 |
+
path = f"{input_dir_path}/layer_{layer+3:02d}-model_0{i}-model_states.pt"
|
47 |
+
checkpoint = torch.load(path)
|
48 |
+
|
49 |
+
weights[f"model.layers.{layer}.input_layernorm.weight"] = checkpoint["input_layernorm.weight"].bfloat16()
|
50 |
+
weights[f"model.layers.{layer}.post_attention_layernorm.weight"] = checkpoint["post_attention_layernorm.weight"].bfloat16()
|
51 |
+
|
52 |
+
kv_weight = checkpoint["self_attention.key_value.weight"].bfloat16()
|
53 |
+
k_weight, v_weight = torch.chunk(kv_weight, 2, dim=0)
|
54 |
+
k_weights.append(k_weight)
|
55 |
+
v_weights.append(v_weight)
|
56 |
+
|
57 |
+
q_weights.append(checkpoint["self_attention.query.weight"].bfloat16())
|
58 |
+
o_weights.append(checkpoint["self_attention.dense.weight"].bfloat16())
|
59 |
+
down_weights.append(checkpoint["mlp.dense_4h_to_h.weight"].bfloat16())
|
60 |
+
|
61 |
+
up_gate_weight = checkpoint["mlp.dense_h_to_4h.weight"].bfloat16()
|
62 |
+
up_weight, gate_weight = torch.chunk(up_gate_weight, 2, dim=0)
|
63 |
+
up_weights.append(up_weight)
|
64 |
+
gate_weights.append(gate_weight)
|
65 |
+
|
66 |
+
weights[f"model.layers.{layer}.self_attn.q_proj.weight"] = torch.cat(q_weights, dim=0)
|
67 |
+
weights[f"model.layers.{layer}.self_attn.k_proj.weight"] = torch.cat(k_weights, dim=0)
|
68 |
+
weights[f"model.layers.{layer}.self_attn.v_proj.weight"] = torch.cat(v_weights, dim=0)
|
69 |
+
weights[f"model.layers.{layer}.self_attn.o_proj.weight"] = torch.cat(o_weights, dim=1)
|
70 |
+
weights[f"model.layers.{layer}.mlp.up_proj.weight"] = torch.cat(up_weights, dim=0)
|
71 |
+
weights[f"model.layers.{layer}.mlp.gate_proj.weight"] = torch.cat(gate_weights, dim=0)
|
72 |
+
weights[f"model.layers.{layer}.mlp.down_proj.weight"] = torch.cat(down_weights, dim=1)
|
73 |
+
|
74 |
+
|
75 |
+
# output layer norm
|
76 |
+
path = f"{input_dir_path}/layer_{n_layers + 4}-model_00-model_states.pt"
|
77 |
+
checkpoint = torch.load(path)
|
78 |
+
|
79 |
+
weights[f"model.norm.weight"] = checkpoint["weight"].bfloat16()
|
80 |
+
|
81 |
+
torch.save(weights, f"{output_dir_path}/pytorch_model.bin")
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9974eba4a7d380ce3a1710693dfa814512bcf2bd9360af3159da7b5a715475fc
|
3 |
+
size 14496143545
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "cls_token": "</s>"}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
{"unk_token": "<unk>", "eos_token": "</s>", "bos_token": "<s>", "tokenizer_class": "PreTrainedTokenizerFast"}
|
2 |
+
|