bokyeong1015 commited on
Commit
96680bc
1 Parent(s): 8170f99

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +105 -0
README.md ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Shortened LLM Model Card
2
+
3
+ Shortened LLM is a depth-pruned version of large language models for efficient text generation.
4
+
5
+ - **Developed by:** [Nota AI](https://www.nota.ai/)
6
+ - **License:** Non-commercial license
7
+ - **Repository:** https://github.com/Nota-NetsPresso/shortened-llm
8
+ - **Paper:** https://arxiv.org/abs/2402.02834
9
+
10
+ ## Compression Method
11
+ * After identifying unimportant Transformer blocks, we perform **one-shot pruning**.
12
+ * In retraining pruned models for quality recovery, **continued pretraining (CPT)** on a large corpus markedly outperforms LoRA-based tuning, particularly at severe pruning ratios.
13
+
14
+ ## Models from Aggressive Pruning & CPT Retraining (arXiv-v2):
15
+ | Source<br>Model | Pruning<br>Ratio | Pruning<br>Criterion | HF Models<br>Link |
16
+ |:---:|:---:|:---:|:---:|
17
+ | Vicuna-v1.3-7B | 20% | PPL | [nota-ai/cpt_st-vicuna-v1.3-5.5b-ppl](https://huggingface.co/nota-ai/cpt_st-vicuna-v1.3-5.5b-ppl) |
18
+ | Vicuna-v1.3-7B | 45% | PPL | [nota-ai/cpt_st-vicuna-v1.3-3.7b-ppl](https://huggingface.co/nota-ai/cpt_st-vicuna-v1.3-3.7b-ppl) |
19
+ | Vicuna-v1.3-7B | 60% | PPL | [nota-ai/cpt_st-vicuna-v1.3-2.7b-ppl](https://huggingface.co/nota-ai/cpt_st-vicuna-v1.3-2.7b-ppl) |
20
+ | Vicuna-v1.3-7B | 80% | PPL | [nota-ai/cpt_st-vicuna-v1.3-1.5b-ppl](https://huggingface.co/nota-ai/cpt_st-vicuna-v1.3-1.5b-ppl) |
21
+
22
+ <details>
23
+ <summary>
24
+ Click to see the results:
25
+ </summary>
26
+
27
+ - EleutherAI/lm-evaluation-harness version [3326c54](https://github.com/EleutherAI/lm-evaluation-harness/tree/3326c547a733d598b4377e54be96e194861b964c)
28
+
29
+ <img alt="results" img src="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/compressed-llm/st_llm-cpt_results.png" width="100%">
30
+
31
+ </details>
32
+
33
+ #### Experimental Setup for CPT of Pruned Vicuna-7B
34
+ * Dataset: [SlimPajama-627B](https://huggingface.co/datasets/cerebras/SlimPajama-627B)
35
+ * Training using 8 NVIDIA H100 GPUs.
36
+ * 5.5B parameters: 37B training tokens (for 6 days)
37
+ * 3.7B parameters: 74B tokens (for 8 days)
38
+ * 2.7B parameters: 150B tokens (for 12 days)
39
+ * 1.5B parameters: 271B tokens (for 11 days)
40
+ * AdamW optimizer with (β1, β2)=(0.9, 0.95); a learning rate of 0.0001; a weight decay of 0.1.
41
+ * Global batch size: 512 (micro-batch size of 2 × 32 gradient accumulation steps × 8 GPUs).
42
+
43
+ <details>
44
+ <summary>
45
+ Click to see the learning curve:
46
+ </summary>
47
+
48
+ **Zero-shot performance over the course of training for models from Vicuna-7B-v1.3 at different pruning ratios.** For each model size, the CPT duration was limited to a two-week period, but additional training could further improve the quality.
49
+
50
+ <img alt="results" img src="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/compressed-llm/st_llm-cpt_learning-curve.png" width="100%">
51
+
52
+ </details>
53
+
54
+
55
+
56
+ ## Models from Moderate Pruning & LoRA Retraining (arXiv-v1):
57
+ | Source<br>Model | Pruning<br>Ratio | Pruning<br>Criterion | HF Models<br>Link |
58
+ |:---:|:---:|:---:|:---:|
59
+ | LLaMA-1-7B | 20% | PPL | [nota-ai/st-llama-1-5.5b-ppl](https://huggingface.co/nota-ai/st-llama-1-5.5b-ppl) |
60
+ | LLaMA-1-7B | 20% | Taylor+ | [nota-ai/st-llama-1-5.5b-taylor](https://huggingface.co/nota-ai/st-llama-1-5.5b-taylor) |
61
+ | Vicuna-v1.3-7B | 20% | PPL | [nota-ai/st-vicuna-v1.3-5.5b-ppl](https://huggingface.co/nota-ai/st-vicuna-v1.3-5.5b-ppl) |
62
+ | Vicuna-v1.3-7B | 20% | Taylor+ | [nota-ai/st-vicuna-v1.3-5.5b-taylor](https://huggingface.co/nota-ai/st-vicuna-v1.3-5.5b-taylor) |
63
+ | Vicuna-v1.3-13B | 21% | PPL | [nota-ai/st-vicuna-v1.3-10.5b-ppl](https://huggingface.co/nota-ai/st-vicuna-v1.3-10.5b-ppl) |
64
+ | Vicuna-v1.3-13B | 21% | Taylor+ | [nota-ai/st-vicuna-v1.3-10.5b-taylor](https://huggingface.co/nota-ai/st-vicuna-v1.3-10.5b-taylor) |
65
+
66
+ <details>
67
+
68
+ <summary>
69
+ Click to see the results:
70
+ </summary>
71
+
72
+ - EleutherAI/lm-evaluation-harness version [3326c54](https://github.com/EleutherAI/lm-evaluation-harness/tree/3326c547a733d598b4377e54be96e194861b964c)
73
+
74
+ <img alt="results" img src="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/compressed-llm/st-llama_zero-shot_scores.png" width="100%">
75
+
76
+ </details>
77
+
78
+ ## License
79
+ - All rights related to this repository and the compressed models are reserved by Nota Inc.
80
+ - The intended use is strictly limited to research and non-commercial projects.
81
+
82
+ ## Acknowledgments
83
+ - [Microsoft for Startups Founders Hub](https://www.microsoft.com/en-us/startups) and [Gwangju AICA](http://www.aica-gj.kr/main.php) for generously providing GPU resources.
84
+ - [LLM-Pruner](https://github.com/horseee/LLM-Pruner), which utilizes [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness), [PEFT](https://github.com/huggingface/peft), and [Alpaca-LoRA](https://github.com/tloen/alpaca-lora). Thanks for the pioneering work on structured pruning of LLMs!
85
+ - Meta AI's [LLaMA](https://github.com/facebookresearch/llama) and LMSYS Org's [Vicuna](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md). Thanks for the open-source LLMs!
86
+
87
+ ## Citation
88
+ ```bibtex
89
+ @article{kim2024shortened,
90
+ title={Shortened LLaMA: Depth Pruning for Large Language Models with Comparison of Retraining Methods},
91
+ author={Kim, Bo-Kyeong and Kim, Geonmin and Kim, Tae-Ho and Castells, Thibault and Choi, Shinkook and Shin, Junho and Song, Hyoung-Kyu},
92
+ journal={arXiv preprint arXiv:2402.02834},
93
+ year={2024},
94
+ url={https://arxiv.org/abs/2402.02834}
95
+ }
96
+ ```
97
+ ```bibtex
98
+ @article{kim2024mefomo,
99
+ title={Shortened LLaMA: A Simple Depth Pruning for Large Language Models},
100
+ author={Kim, Bo-Kyeong and Kim, Geonmin and Kim, Tae-Ho and Castells, Thibault and Choi, Shinkook and Shin, Junho and Song, Hyoung-Kyu},
101
+ journal={ICLR Workshop on Mathematical and Empirical Understanding of Foundation Models (ME-FoMo)},
102
+ year={2024},
103
+ url={https://openreview.net/forum?id=18VGxuOdpu}
104
+ }
105
+ ```