Upload NavyBayes.py
Browse files- NavyBayes.py +48 -46
NavyBayes.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
-
from sklearn.
|
2 |
from sklearn.naive_bayes import MultinomialNB
|
|
|
3 |
from joblib import dump, load
|
4 |
import firebase_admin
|
5 |
from firebase_admin import credentials, firestore
|
@@ -8,13 +9,13 @@ import datetime
|
|
8 |
import re
|
9 |
import pandas as pd
|
10 |
import os
|
|
|
11 |
|
12 |
# إعداد السجلات
|
13 |
logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s")
|
14 |
|
15 |
# Firebase Initialization
|
16 |
try:
|
17 |
-
# استخدم المسار الذي قدمته
|
18 |
cred_path = r"D:\app-sentinel-7qnr19-firebase-adminsdk-kjmbe-533749ec1a.json"
|
19 |
if not firebase_admin._apps:
|
20 |
cred = credentials.Certificate(cred_path)
|
@@ -25,54 +26,55 @@ except Exception as e:
|
|
25 |
logging.error(f"Error initializing Firebase: {e}")
|
26 |
db = None
|
27 |
|
28 |
-
# Load or Train Model
|
29 |
try:
|
30 |
-
model_path = os.path.join(os.getcwd(), "
|
31 |
-
|
32 |
-
|
33 |
-
vectorizer = load(vectorizer_path)
|
34 |
-
logging.info("Model and vectorizer loaded successfully.")
|
35 |
except Exception as e:
|
36 |
-
logging.warning(f"Model
|
37 |
-
# Train new model and vectorizer
|
38 |
-
messages = ["example message 1", "example message 2"]
|
39 |
-
labels = ["label1", "label2"]
|
40 |
-
vectorizer = TfidfVectorizer()
|
41 |
-
X = vectorizer.fit_transform(messages)
|
42 |
-
model = MultinomialNB()
|
43 |
-
model.fit(X, labels)
|
44 |
-
dump(model, model_path)
|
45 |
-
dump(vectorizer, vectorizer_path)
|
46 |
-
logging.info("New model and vectorizer trained and saved.")
|
47 |
-
|
48 |
-
# Classify Message
|
49 |
-
def classify_and_store_message(message):
|
50 |
-
"""
|
51 |
-
Classify a message and store the result in Firestore.
|
52 |
-
"""
|
53 |
-
global model, vectorizer
|
54 |
try:
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
classification = model.predict(message_vector)[0]
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
logging.error(f"Error in classification: {e}")
|
78 |
-
return None
|
|
|
1 |
+
from sklearn.pipeline import Pipeline
|
2 |
from sklearn.naive_bayes import MultinomialNB
|
3 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
4 |
from joblib import dump, load
|
5 |
import firebase_admin
|
6 |
from firebase_admin import credentials, firestore
|
|
|
9 |
import re
|
10 |
import pandas as pd
|
11 |
import os
|
12 |
+
from flask import Flask, request, jsonify
|
13 |
|
14 |
# إعداد السجلات
|
15 |
logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s")
|
16 |
|
17 |
# Firebase Initialization
|
18 |
try:
|
|
|
19 |
cred_path = r"D:\app-sentinel-7qnr19-firebase-adminsdk-kjmbe-533749ec1a.json"
|
20 |
if not firebase_admin._apps:
|
21 |
cred = credentials.Certificate(cred_path)
|
|
|
26 |
logging.error(f"Error initializing Firebase: {e}")
|
27 |
db = None
|
28 |
|
29 |
+
# Load or Train Model with Pipeline
|
30 |
try:
|
31 |
+
model_path = os.path.join(os.getcwd(), "model_pipeline.joblib")
|
32 |
+
model_pipeline = load(model_path)
|
33 |
+
logging.info("Model pipeline loaded successfully.")
|
|
|
|
|
34 |
except Exception as e:
|
35 |
+
logging.warning(f"Model pipeline not found. Training new one. Error: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
try:
|
37 |
+
# Train new model and vectorizer as part of pipeline
|
38 |
+
messages = ["example message 1", "example message 2"]
|
39 |
+
labels = ["label1", "label2"]
|
40 |
+
model_pipeline = Pipeline([
|
41 |
+
('vectorizer', TfidfVectorizer()), # تحويل النصوص إلى تمثيل رقمي
|
42 |
+
('classifier', MultinomialNB()) # تصنيف باستخدام Naive Bayes
|
43 |
+
])
|
44 |
+
model_pipeline.fit(messages, labels)
|
45 |
+
dump(model_pipeline, model_path)
|
46 |
+
logging.info("New model pipeline trained and saved.")
|
47 |
+
except Exception as e:
|
48 |
+
logging.error(f"Error training new model: {e}")
|
49 |
|
50 |
+
# Flask API
|
51 |
+
app = Flask(__name__)
|
|
|
52 |
|
53 |
+
@app.route('/classify', methods=['POST'])
|
54 |
+
def classify_message():
|
55 |
+
data = request.json
|
56 |
+
message = data.get("message", "")
|
57 |
+
|
58 |
+
# التصنيف باستخدام الـ pipeline
|
59 |
+
if message.strip() == "":
|
60 |
+
return jsonify({"error": "Message cannot be empty"}), 400
|
61 |
+
|
62 |
+
classification = model_pipeline.predict([message])[0]
|
63 |
+
|
64 |
+
# تخزين الرسالة في Firestore
|
65 |
+
message_data = {
|
66 |
+
"text": message,
|
67 |
+
"classification": classification,
|
68 |
+
"timestamp": datetime.datetime.now(),
|
69 |
+
}
|
70 |
|
71 |
+
if db:
|
72 |
+
db.collection("all_messages").add(message_data)
|
73 |
+
logging.info(f"Message classified as {classification} and stored in Firestore.")
|
74 |
+
else:
|
75 |
+
logging.warning("Firestore is not initialized. Data not stored.")
|
76 |
+
|
77 |
+
return jsonify({"classification": classification})
|
78 |
|
79 |
+
if __name__ == "__main__":
|
80 |
+
app.run(debug=True)
|
|
|
|