File size: 2,915 Bytes
4b0a79a 208fbea cc245c2 208fbea 4b0a79a 208fbea cc245c2 208fbea cc245c2 208fbea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
license: apache-2.0
base_model: facebook/hubert-large-ll60k
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: speech_ocean_hubert_mdd
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# speech_ocean_hubert_mdd
This model is a fine-tuned version of [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2060
- Wer: 0.0531
- Cer: 0.0507
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-------:|:----:|:---------------:|:------:|:------:|
| 42.5933 | 0.9873 | 39 | 36.3096 | 0.9995 | 0.9985 |
| 15.8463 | 2.0 | 79 | 7.9376 | 1.0 | 1.0 |
| 6.5393 | 2.9873 | 118 | 4.5528 | 1.0 | 1.0 |
| 3.9947 | 4.0 | 158 | 3.8592 | 1.0 | 1.0 |
| 3.8025 | 4.9873 | 197 | 3.8002 | 1.0 | 1.0 |
| 3.7706 | 6.0 | 237 | 3.7435 | 1.0 | 1.0 |
| 3.7676 | 6.9873 | 276 | 3.7276 | 1.0 | 1.0 |
| 3.7353 | 8.0 | 316 | 3.7150 | 1.0 | 1.0 |
| 3.7126 | 8.9873 | 355 | 3.6717 | 1.0 | 1.0 |
| 3.5628 | 10.0 | 395 | 3.3098 | 1.0 | 1.0 |
| 2.837 | 10.9873 | 434 | 2.3304 | 0.8277 | 0.8915 |
| 2.1018 | 12.0 | 474 | 1.5575 | 0.5441 | 0.6213 |
| 1.6164 | 12.9873 | 513 | 1.0106 | 0.2678 | 0.2596 |
| 1.1823 | 14.0 | 553 | 0.6938 | 0.1788 | 0.1509 |
| 0.9451 | 14.9873 | 592 | 0.4673 | 0.1154 | 0.0925 |
| 0.7055 | 16.0 | 632 | 0.3455 | 0.0893 | 0.0767 |
| 0.5434 | 16.9873 | 671 | 0.2803 | 0.0718 | 0.0637 |
| 0.4867 | 18.0 | 711 | 0.2362 | 0.0608 | 0.0566 |
| 0.4172 | 18.9873 | 750 | 0.2125 | 0.0551 | 0.0522 |
| 0.4406 | 19.7468 | 780 | 0.2060 | 0.0531 | 0.0507 |
### Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
|