File size: 13,232 Bytes
20150e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
# Copyright 2023 Stability AI team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple, Union, Any
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from transformers import (
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
PreTrainedModel,
CLIPVisionModel,
)
from transformers.utils import logging, ModelOutput
from .configuration_llava import LlavaConfig
logger = logging.get_logger(__name__)
@dataclass
class LlavaForConditionalGenerationModelOutput(ModelOutput):
loss: Optional[Tuple[torch.FloatTensor]] = None
logits: Optional[Tuple[torch.FloatTensor]] = None
vision_outputs: Optional[torch.FloatTensor] = None
language_model_outputs: Optional[Tuple[torch.FloatTensor]] = None
def to_tuple(self) -> Tuple[Any]:
return tuple(
self[k]
if k not in ["vision_outputs", "language_model_outputs"]
else getattr(self, k).to_tuple()
for k in self.keys()
)
class LlavaPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = LlavaConfig
base_model_prefix = "llava"
# Copied from transformers.models.blip_2.modeling_blip_2.Blip2PreTrainedModel._init_weights with Blip2->InstructBlip
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_range
if (
isinstance(module, nn.Conv2d)
or isinstance(module, nn.Embedding)
or isinstance(module, nn.Linear)
):
module.weight.data.normal_(mean=0.0, std=factor)
if hasattr(module, "bias") and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
class LlavaForConditionalGeneration(LlavaPreTrainedModel):
config_class = LlavaConfig
main_input_name = "pixel_values"
_no_split_modules = []
def __init__(self, config: LlavaConfig):
super().__init__(config)
self.vision_model = CLIPVisionModel(config.vision_config)
if config.use_decoder_only_language_model:
language_model = AutoModelForCausalLM.from_config(config.text_config)
else:
language_model = AutoModelForSeq2SeqLM.from_config(config.text_config)
if language_model._no_split_modules is not None:
self._no_split_modules.extend(language_model._no_split_modules)
if language_model._keep_in_fp32_modules is not None:
self._keep_in_fp32_modules.extend(language_model._keep_in_fp32_modules)
self.language_model = language_model
modules = [
nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size)
]
for _ in range(1, config.mlp_config.num_hidden_layers):
modules.append(nn.GELU())
modules.append(
nn.Linear(
config.text_config.hidden_size, config.text_config.hidden_size
)
)
self.mlp = nn.Sequential(*modules)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
def get_output_embeddings(self) -> nn.Module:
return self.language_model.get_output_embeddings()
def get_encoder(self):
return self.language_model.get_encoder()
def get_decoder(self):
return self.language_model.get_decoder()
def _tie_weights(self):
if not self.config.use_decoder_only_language_model:
self.language_model.encoder.embed_tokens = self.language_model.shared
self.language_model.decoder.embed_tokens = self.language_model.shared
def _preprocess_accelerate(self):
r"""
Some pre-processing hacks to make the model `accelerate` compatible. Check
https://github.com/huggingface/transformers/pull/21707 for more details.
"""
hf_device_map = self.hf_device_map
if (
len(hf_device_map) > 1
and "language_model" not in hf_device_map
and torch.cuda.device_count() > 1
):
# warn users about unexpected behavior when using multi-GPU + InstructBLIP + `accelerate`.
logger.warning(
"The `language_model` is not in the `hf_device_map` dictionary and you are running your script"
" in a multi-GPU environment. this may lead to unexpected behavior when using `accelerate`."
" Please pass a `device_map` that contains `language_model` to remove this warning."
" Please refer to https://github.com/huggingface/blog/blob/main/accelerate-large-models.md for"
" more details on creating a `device_map` for large models.",
)
if hasattr(self.language_model, "_hf_hook"):
self.language_model._hf_hook.io_same_device = (
True # For `generate` compatibility
)
def forward(
self,
pixel_values: torch.FloatTensor,
input_ids: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.LongTensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, LlavaForConditionalGenerationModelOutput]:
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# step 1: forward the images through the vision encoder,
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
return_dict=return_dict,
output_hidden_states=True,
)
# (bsz, seq len, hidden_size)
image_embeds = vision_outputs.hidden_states[self.config.vision_select_layer]
if self.config.vision_select_feature == "patch":
image_embeds = image_embeds[:, 1:]
elif self.config.vision_select_feature == "cls_patch":
image_embeds = image_embeds
else:
raise ValueError(f"Unexpected select feature: {self.select_feature}")
# step 2: forward the image embeddings through the mlp
image_embeds = self.mlp(image_embeds)
image_attention_mask = torch.ones(
image_embeds.size()[:-1], device=image_embeds.device
)
inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
# step 3: concatenate
inputs_embeds = torch.cat(
[image_embeds, inputs_embeds.to(image_embeds.device)],
dim=1,
)
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, device=input_ids.device)
attention_mask = torch.cat(
[image_attention_mask.to(attention_mask.device), attention_mask],
dim=1,
)
if self.config.use_decoder_only_language_model:
outputs = self.language_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits if return_dict else outputs[0]
loss = None
# we compute the loss here since we need to take into account the sequence length of the query embeds
if labels is not None:
labels = labels.to(logits.device)
logits = logits[:, -labels.size(1) :, :]
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous().to(logits.device)
# Flatten the tokens
loss_fct = CrossEntropyLoss(reduction="mean")
loss = loss_fct(
shift_logits.view(-1, self.config.text_config.vocab_size),
shift_labels.view(-1),
)
else:
outputs = self.language_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
labels=labels,
)
loss = outputs.loss if return_dict else outputs[0]
logits = outputs.logits if return_dict else outputs[1]
if not return_dict:
output = (logits, vision_outputs, outputs)
return ((loss,) + output) if loss is not None else output
return LlavaForConditionalGenerationModelOutput(
loss=loss,
logits=logits,
vision_outputs=vision_outputs,
language_model_outputs=outputs,
)
def get_image_embeds(self, pixel_values: torch.FloatTensor):
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_hidden_states=True,
)
image_embeds = vision_outputs.hidden_states[self.config.vision_select_layer]
if self.config.vision_select_feature == "patch":
image_embeds = image_embeds[:, 1:]
elif self.config.vision_select_feature == "cls_patch":
image_embeds = image_embeds
else:
raise ValueError(f"Unexpected select feature: {self.select_feature}")
image_embeds = self.mlp(image_embeds)
image_attention_mask = torch.ones(
image_embeds.size()[:-1], device=image_embeds.device
)
return dict(
image_embeds=image_embeds,
image_attention_mask=image_attention_mask,
)
def prepare_for_lm_generation(
self,
pixel_values: torch.FloatTensor,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
):
batch_size = pixel_values.shape[0]
vision_outputs = self.get_image_embeds(pixel_values)
image_embeds = vision_outputs["image_embeds"]
image_attention_mask = vision_outputs["image_attention_mask"]
if input_ids is None:
input_ids = (
torch.LongTensor([[self.config.text_config.bos_token_id]])
.repeat(batch_size, 1)
.to(image_embeds.device)
)
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
attention_mask = torch.cat(
[
image_attention_mask,
attention_mask.to(image_attention_mask.device),
],
dim=1,
)
# concatenate query embeddings with prompt embeddings
inputs_embeds = self.get_input_embeddings()(input_ids)
inputs_embeds = torch.cat(
[image_embeds, inputs_embeds.to(image_embeds.device)],
dim=1,
)
return dict(inputs_embeds=inputs_embeds, attention_mask=attention_mask)
@torch.no_grad()
def generate(
self,
pixel_values: torch.FloatTensor,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
**generate_kwargs,
) -> torch.LongTensor:
if hasattr(self, "hf_device_map"):
# preprocess for `accelerate`
self._preprocess_accelerate()
encodings = self.prepare_for_lm_generation(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
)
outputs = self.language_model.generate(
**encodings,
**generate_kwargs,
)
return outputs |