--- license: mit language: - multilingual tags: - nlp base_model: HuggingFaceTB/SmolLM2-1.7B pipeline_tag: text-generation inference: true --- # NuExtract-1.5-smol by NuMind 🔥 NuExtract-1.5-smol is a fine-tuning of Hugging Face's [SmolLM2-1.7B](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B), intended for structured information extraction. It uses the same training data as [NuExtract-1.5](https://huggingface.co/numind/NuExtract-1.5) and supports multiple languages, while being less than half the size (1.7B vs 3.8B). To use the model, provide an input text and a JSON template describing the information you need to extract. Note: This model is trained to prioritize pure extraction, so in most cases all text generated by the model is present as is in the original text. Check out the [blog post](https://numind.ai/blog/nuextract-1-5---multilingual-infinite-context-still-small-and-better-than-gpt-4o). Try the 3.8B model here: [Playground](https://huggingface.co/spaces/numind/NuExtract-v1.5) We also provide a tiny (0.5B) version which is based on Qwen2.5-0.5B: [NuExtract-tiny-v1.5](https://huggingface.co/numind/NuExtract-tiny-v1.5) ⚠️ We recommend using NuExtract with a temperature at or very close to 0. Some inference frameworks, such as Ollama, use a default of 0.7 which is not well suited to pure extraction tasks. ## Benchmark Zero-shot performance (English):
Zero-shot performance (Multilingual):
## Usage To use the model: ```python import json import torch from transformers import AutoModelForCausalLM, AutoTokenizer def predict_NuExtract(model, tokenizer, texts, template, batch_size=1, max_length=10_000, max_new_tokens=4_000): template = json.dumps(json.loads(template), indent=4) prompts = [f"""<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>""" for text in texts] outputs = [] with torch.no_grad(): for i in range(0, len(prompts), batch_size): batch_prompts = prompts[i:i+batch_size] batch_encodings = tokenizer(batch_prompts, return_tensors="pt", truncation=True, padding=True, max_length=max_length).to(model.device) pred_ids = model.generate(**batch_encodings, max_new_tokens=max_new_tokens) outputs += tokenizer.batch_decode(pred_ids, skip_special_tokens=True) return [output.split("<|output|>")[1] for output in outputs] model_name = "numind/NuExtract-1.5-smol" device = "cuda" model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, trust_remote_code=True).to(device).eval() tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) text = """We introduce Mistral 7B, a 7–billion-parameter language model engineered for superior performance and efficiency. Mistral 7B outperforms the best open 13B model (Llama 2) across all evaluated benchmarks, and the best released 34B model (Llama 1) in reasoning, mathematics, and code generation. Our model leverages grouped-query attention (GQA) for faster inference, coupled with sliding window attention (SWA) to effectively handle sequences of arbitrary length with a reduced inference cost. We also provide a model fine-tuned to follow instructions, Mistral 7B – Instruct, that surpasses Llama 2 13B – chat model both on human and automated benchmarks. Our models are released under the Apache 2.0 license. Code: