liamcripwell commited on
Commit
e963e00
1 Parent(s): 47b9d50

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -191
README.md CHANGED
@@ -1,199 +1,94 @@
1
  ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
 
100
 
101
- [More Information Needed]
102
 
103
- ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
 
107
- ### Testing Data, Factors & Metrics
108
 
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
+ license: mit
4
+ language:
5
 
6
+ - multilingual
7
 
8
+ tags:
9
 
10
+ - nlp
11
 
12
+ base_model: microsoft/Phi-3.5-mini-instruct
13
 
14
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
+ # NuExtract-v1.5 by NuMind 🔥
17
+
18
+ NuExtract is a fine-tuning of [Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct), trained on a private high-quality dataset for structured information extraction. It supports long documents and several languages (English, French, Spanish, German, Portuguese, and Italian).
19
+ To use the model, provide an input text and a JSON template describing the information you need to extract.
20
+
21
+ Note: This model is trained to prioritize pure extraction, so in most cases all text generated by the model is present as is in the original text.
22
+
23
+ Try it here: <space-link>
24
+
25
+ We also provide a tiny (0.5B) version which is based on Qwen2.5-0.5B: [NuExtract-tiny-v1.5](https://huggingface.co/numind/NuExtract-tiny-v1.5)
26
+
27
+ **Checkout other models by NuMind:**
28
+
29
+ - NuExtract Version 1 Models: [0.5B](https://huggingface.co/numind/NuExtract-tiny), [3.8B](https://huggingface.co/numind/NuExtract), [7B](https://huggingface.co/numind/NuExtract-large)
30
+ - SOTA Zero-shot NER Model [NuNER Zero](https://huggingface.co/numind/NuNER_Zero)
31
+ - SOTA Multilingual Entity Recognition Foundation Model: [link](https://huggingface.co/numind/entity-recognition-multilingual-general-sota-v1)
32
+ - SOTA Sentiment Analysis Foundation Model: [English](https://huggingface.co/numind/generic-sentiment-v1), [Multilingual](https://huggingface.co/numind/generic-sentiment-multi-v1)
33
+
34
+ ## Benchmark
35
+
36
+ Include result plots.
37
+
38
+ ## Usage
39
+
40
+ To use the model:
41
+
42
+ ```python
43
+ import json
44
+ from transformers import AutoModelForCausalLM, AutoTokenizer
45
+
46
+ def predict_NuExtract(model, tokenizer, texts, template, batch_size=1, max_length=10_000, max_new_tokens=4_000):
47
+ template = json.dumps(json.loads(template), indent=4)
48
+ prompts = [f"""<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>""" for text in texts]
49
+
50
+ outputs = []
51
+ with torch.no_grad():
52
+ for i in range(0, len(prompts), batch_size):
53
+ batch_prompts = prompts[i:i+batch_size]
54
+ batch_encodings = tokenizer(batch_prompts, return_tensors="pt", truncation=True, padding=True, max_length=max_length).to(model.device)
55
+
56
+ pred_ids = model.generate(**batch_encodings, max_new_tokens=max_new_tokens)
57
+ outputs += tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
58
+
59
+ return [output.split("<|output|>")[1] for output in outputs]
60
+
61
+ model_name = "numind/NuExtract-v1.5"
62
+ device = "cuda"
63
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, trust_remote_code=True).to(device).eval()
64
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
65
+
66
+ text = """We introduce Mistral 7B, a 7–billion-parameter language model engineered for
67
+ superior performance and efficiency. Mistral 7B outperforms the best open 13B
68
+ model (Llama 2) across all evaluated benchmarks, and the best released 34B
69
+ model (Llama 1) in reasoning, mathematics, and code generation. Our model
70
+ leverages grouped-query attention (GQA) for faster inference, coupled with sliding
71
+ window attention (SWA) to effectively handle sequences of arbitrary length with a
72
+ reduced inference cost. We also provide a model fine-tuned to follow instructions,
73
+ Mistral 7B – Instruct, that surpasses Llama 2 13B – chat model both on human and
74
+ automated benchmarks. Our models are released under the Apache 2.0 license.
75
+ Code: <https://github.com/mistralai/mistral-src>
76
+ Webpage: <https://mistral.ai/news/announcing-mistral-7b/>"""
77
+
78
+ template = """{
79
+ "Model": {
80
+ "Name": "",
81
+ "Number of parameters": "",
82
+ "Number of max token": "",
83
+ "Architecture": []
84
+ },
85
+ "Usage": {
86
+ "Use case": [],
87
+ "Licence": ""
88
+ }
89
+ }"""
90
+
91
+ prediction = predict_NuExtract(model, tokenizer, [text], template)[0]
92
+ print(prediction)
93
+
94
+ ```