File size: 3,694 Bytes
600d2d8 c4fca7f 41bb93b 600d2d8 684ff5b 00fe38d 600d2d8 0c86184 1c56e40 0c86184 42ce801 1c56e40 afa5086 600d2d8 59e3b65 600d2d8 0c86184 600d2d8 0c86184 600d2d8 5fece14 600d2d8 80c21c9 600d2d8 0c86184 5fece14 600d2d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: mit
language:
- en
base_model: Qwen/Qwen1.5-0.5B
new_version: numind/NuExtract-v1.5
---
> ⚠️ **_NOTE:_** This model is out-dated. Find the updated version [here](https://huggingface.co/numind/NuExtract-tiny-v1.5)
>
# Structure Extraction Model by NuMind 🔥
NuExtract_tiny is a version of [Qwen1.5-0.5](https://huggingface.co/Qwen/Qwen1.5-0.5B), fine-tuned on a private high-quality synthetic dataset for information extraction. To use the model, provide an input text (less than 2000 tokens) and a JSON template describing the information you need to extract.
Note: This model is purely extractive, so all text output by the model is present as is in the original text. You can also provide an example of output formatting to help the model understand your task more precisely.
Note: While this model provides good 0 shot performance, it is intended to be fine-tuned on a specific task (>=30 examples).
We also provide a base (3.8B) and large(7B) version of this model: [NuExtract](https://huggingface.co/numind/NuExtract) and [NuExtract-large](https://huggingface.co/numind/NuExtract-large)
**Checkout other models by NuMind:**
* SOTA Zero-shot NER Model [NuNER Zero](https://huggingface.co/numind/NuNER_Zero)
* SOTA Multilingual Entity Recognition Foundation Model: [link](https://huggingface.co/numind/entity-recognition-multilingual-general-sota-v1)
* SOTA Sentiment Analysis Foundation Model: [English](https://huggingface.co/numind/generic-sentiment-v1), [Multilingual](https://huggingface.co/numind/generic-sentiment-multi-v1)
## Usage
To use the model:
```python
import json
from transformers import AutoModelForCausalLM, AutoTokenizer
def predict_NuExtract(model, tokenizer, text, schema, example=["","",""]):
schema = json.dumps(json.loads(schema), indent=4)
input_llm = "<|input|>\n### Template:\n" + schema + "\n"
for i in example:
if i != "":
input_llm += "### Example:\n"+ json.dumps(json.loads(i), indent=4)+"\n"
input_llm += "### Text:\n"+text +"\n<|output|>\n"
input_ids = tokenizer(input_llm, return_tensors="pt", truncation=True, max_length=4000).to("cuda")
output = tokenizer.decode(model.generate(**input_ids)[0], skip_special_tokens=True)
return output.split("<|output|>")[1].split("<|end-output|>")[0]
model = AutoModelForCausalLM.from_pretrained("numind/NuExtract-tiny", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("numind/NuExtract-tiny", trust_remote_code=True)
model.to("cuda")
model.eval()
text = """We introduce Mistral 7B, a 7–billion-parameter language model engineered for
superior performance and efficiency. Mistral 7B outperforms the best open 13B
model (Llama 2) across all evaluated benchmarks, and the best released 34B
model (Llama 1) in reasoning, mathematics, and code generation. Our model
leverages grouped-query attention (GQA) for faster inference, coupled with sliding
window attention (SWA) to effectively handle sequences of arbitrary length with a
reduced inference cost. We also provide a model fine-tuned to follow instructions,
Mistral 7B – Instruct, that surpasses Llama 2 13B – chat model both on human and
automated benchmarks. Our models are released under the Apache 2.0 license.
Code: https://github.com/mistralai/mistral-src
Webpage: https://mistral.ai/news/announcing-mistral-7b/"""
schema = """{
"Model": {
"Name": "",
"Number of parameters": "",
"Number of max token": "",
"Architecture": []
},
"Usage": {
"Use case": [],
"Licence": ""
}
}"""
prediction = predict_NuExtract(model, tokenizer, text, schema, example=["","",""])
print(prediction)
``` |