|
import inspect |
|
import math |
|
import warnings |
|
from dataclasses import dataclass, field |
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
import numpy as np |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import Cache, DynamicCache |
|
from transformers.modeling_attn_mask_utils import ( |
|
_prepare_4d_causal_attention_mask, |
|
_prepare_4d_causal_attention_mask_for_sdpa, |
|
) |
|
|
|
from transformers.modeling_outputs import ( |
|
MoeCausalLMOutputWithPast, |
|
MoeModelOutputWithPast, |
|
SequenceClassifierOutputWithPast, |
|
) |
|
|
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_13 |
|
from transformers.utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_flash_attn_greater_or_equal_2_10, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
|
|
from transformers.utils.import_utils import is_torch_fx_available |
|
from .configuration_hymba import HymbaConfig |
|
from torch.utils.checkpoint import checkpoint |
|
|
|
|
|
from flash_attn import flash_attn_func, flash_attn_varlen_func |
|
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input |
|
|
|
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) |
|
|
|
from einops import rearrange, repeat, reduce, pack, unpack |
|
from einops.layers.torch import Rearrange |
|
|
|
|
|
if is_torch_fx_available(): |
|
if not is_torch_greater_or_equal_than_1_13: |
|
import torch.fx |
|
|
|
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask) |
|
|
|
|
|
from mamba_ssm.ops.selective_scan_interface import mamba_inner_fn, selective_scan_fn |
|
from mamba_ssm.ops.triton.selective_state_update import selective_state_update |
|
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update |
|
|
|
|
|
is_fast_path_available = all( |
|
(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn) |
|
) |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "HymbaConfig" |
|
|
|
|
|
def pad_at_dim(t, pad: Tuple[int, int], dim = -1, value = 0.): |
|
if pad == (0, 0): |
|
return t |
|
|
|
dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1) |
|
zeros = ((0, 0) * dims_from_right) |
|
return F.pad(t, (*zeros, *pad), value = value) |
|
|
|
|
|
def load_balancing_loss_func( |
|
gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None |
|
) -> float: |
|
r""" |
|
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. |
|
|
|
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss |
|
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between |
|
experts is too unbalanced. |
|
|
|
Args: |
|
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]): |
|
Logits from the `router`, should be a tuple of model.config.num_hidden_layers tensors of |
|
shape [batch_size X sequence_length, num_experts]. |
|
attention_mask (`torch.Tensor`, None): |
|
The attention_mask used in forward function |
|
shape [batch_size X sequence_length] if not None. |
|
num_experts (`int`, *optional*): |
|
Number of experts |
|
|
|
Returns: |
|
The auxiliary loss. |
|
""" |
|
if gate_logits is None or not isinstance(gate_logits, tuple): |
|
return 0 |
|
|
|
if isinstance(gate_logits, tuple): |
|
compute_device = gate_logits[0].device |
|
concatenated_gate_logits = torch.cat( |
|
[layer_gate.to(compute_device) for layer_gate in gate_logits if layer_gate.shape[1] > 1], dim=0 |
|
) |
|
|
|
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1) |
|
|
|
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1) |
|
|
|
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) |
|
|
|
if attention_mask is None: |
|
|
|
tokens_per_expert = torch.mean(expert_mask.float(), dim=0) |
|
|
|
|
|
router_prob_per_expert = torch.mean(routing_weights, dim=0) |
|
else: |
|
batch_size, sequence_length = attention_mask.shape |
|
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length) |
|
|
|
|
|
expert_attention_mask = ( |
|
attention_mask[None, :, :, None, None] |
|
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts)) |
|
.reshape(-1, top_k, num_experts) |
|
.to(compute_device) |
|
) |
|
|
|
|
|
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum( |
|
expert_attention_mask, dim=0 |
|
) |
|
|
|
|
|
router_per_expert_attention_mask = ( |
|
attention_mask[None, :, :, None] |
|
.expand((num_hidden_layers, batch_size, sequence_length, num_experts)) |
|
.reshape(-1, num_experts) |
|
.to(compute_device) |
|
) |
|
|
|
|
|
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum( |
|
router_per_expert_attention_mask, dim=0 |
|
) |
|
|
|
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0)) |
|
return overall_loss * num_experts |
|
|
|
|
|
|
|
def _get_unpad_data(attention_mask): |
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) |
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
max_seqlen_in_batch = seqlens_in_batch.max().item() |
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) |
|
return ( |
|
indices, |
|
cu_seqlens, |
|
max_seqlen_in_batch, |
|
) |
|
|
|
|
|
class HymbaRMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
HymbaRMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
class PerheadHymbaRMSNorm(nn.Module): |
|
def __init__(self, hidden_size, num_heads, eps=1e-6): |
|
""" |
|
For per-head kq normalization |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(1, num_heads, 1, hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
|
|
assert hidden_states.shape[1] == self.weight.shape[1], f"hidden_state: {hidden_states.shape}, weight: {self.weight.shape}" |
|
assert hidden_states.shape[3] == self.weight.shape[3], f"hidden_state: {hidden_states.shape}, weight: {self.weight.shape}" |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
|
|
|
|
|
|
|
|
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
class HymbaOnlyNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
HymbaRMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
|
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return hidden_states.to(input_dtype) |
|
|
|
|
|
class LlamaRotaryEmbedding(nn.Module): |
|
def __init__(self, config, dim, base=10000, device=None, scaling_factor=1.0): |
|
super().__init__() |
|
self.scaling_factor = scaling_factor |
|
self.dim = dim |
|
self.base = base |
|
self.config = config |
|
|
|
self.rope_type = config.rope_type |
|
|
|
self.factor = 2 |
|
|
|
max_position_embeddings = self.config.max_position_embeddings |
|
|
|
if config.rope_type is None or config.rope_type == "default": |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) |
|
self.max_seq_len_cached = max_position_embeddings |
|
|
|
elif config.rope_type == 'ntk': |
|
assert self.config.orig_max_position_embeddings is not None |
|
orig_max_position_embeddings = self.config.orig_max_position_embeddings |
|
|
|
base = base * ((self.factor * max_position_embeddings / orig_max_position_embeddings) - (self.factor - 1)) ** (self.dim / (self.dim - 2)) |
|
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) |
|
|
|
self.max_seq_len_cached = orig_max_position_embeddings |
|
|
|
elif config.rope_type == 'dynamic_ntk': |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) |
|
self.original_inv_freq = inv_freq |
|
self.max_seq_len_cached = self.config.orig_max_position_embeddings |
|
|
|
else: |
|
raise ValueError(f"Not support rope_type: {config.rope_type}") |
|
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
|
|
def _dynamic_frequency_update(self, position_ids, device): |
|
""" |
|
dynamic RoPE layers should recompute `inv_freq` in the following situations: |
|
1 - growing beyond the cached sequence length (allow scaling) |
|
2 - the current sequence length is in the original scale (avoid losing precision with small sequences) |
|
""" |
|
|
|
seq_len = torch.max(position_ids) + 1 |
|
if seq_len > self.max_seq_len_cached: |
|
base = self.base * ((self.factor * seq_len / self.config.orig_max_position_embeddings) - (self.factor - 1)) ** (self.dim / (self.dim - 2)) |
|
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) |
|
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
self.max_seq_len_cached = seq_len |
|
|
|
if seq_len < self.config.orig_max_position_embeddings and self.max_seq_len_cached > self.config.orig_max_position_embeddings: |
|
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) |
|
self.max_seq_len_cached = self.config.orig_max_position_embeddings |
|
|
|
|
|
|
|
@torch.no_grad() |
|
def forward(self, x, position_ids): |
|
if self.rope_type == 'dynamic_ntk': |
|
self._dynamic_frequency_update(position_ids, device=x.device) |
|
|
|
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) |
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
|
|
device_type = x.device.type |
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" |
|
with torch.autocast(device_type=device_type, enabled=False): |
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
cos = emb.cos() |
|
sin = emb.sin() |
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
Args: |
|
q (`torch.Tensor`): The query tensor. |
|
k (`torch.Tensor`): The key tensor. |
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
position_ids (`torch.Tensor`, *optional*): |
|
Deprecated and unused. |
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
Returns: |
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
""" |
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
if q is not None: |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
|
|
else: |
|
q_embed = None |
|
|
|
if k is not None: |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
else: |
|
k_embed = None |
|
return q_embed, k_embed |
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
|
|
class HybridMambaAttentionDynamicCache(DynamicCache): |
|
""" |
|
A dynamic cache that can handle both the attention cache (which has a seq_len dimension) and the mamba cache |
|
(which has a constant shape regardless of seq_len). |
|
|
|
This cache has two sets of lists of tensors: `key_cache` and `value_cache` for attention cache and `conv_states` |
|
and `ssm_states` for mamba cache. Each of these lists has `num_layers` tensors. The expected shape for each tensor |
|
For attention layers, `key_cache` and `value_cache` have a shape of `(batch_size, num_heads, seq_len, head_dim)`, |
|
while `conv_states` and `ssm_states` have a shape of `(batch_size, 0)` (empty tensors). |
|
For mamba layers, `key_cache` and `value_cache` have a shape of `(batch_size, 0)` (empty tensors), |
|
while `conv_states` represents the convolution state and has a shape of `(batch_size, d_inner, d_conv)`, |
|
and `ssm_states` represents the ssm state and has a shape of `(batch_size, d_inner, d_state)`. |
|
""" |
|
|
|
def __init__(self, config, batch_size, dtype=torch.float16, device=None, layer_type=None): |
|
self.dtype = dtype |
|
|
|
self.has_previous_state = False |
|
intermediate_size = config.mamba_expand * config.hidden_size |
|
ssm_state_size = config.mamba_d_state |
|
conv_kernel_size = config.mamba_d_conv |
|
self.conv_states = [] |
|
self.ssm_states = [] |
|
|
|
self.layer_type = layer_type |
|
|
|
for i in range(config.num_hidden_layers): |
|
if layer_type is None: |
|
has_mamba_state = True |
|
else: |
|
has_mamba_state = self.layer_type[i] == 'h' or self.layer_type[i] == 'm' |
|
|
|
if has_mamba_state: |
|
if hasattr(config, 'conv_dim'): |
|
conv_dim = config.conv_dim[i] |
|
else: |
|
conv_dim = intermediate_size |
|
self.conv_states += [ |
|
torch.zeros(batch_size, conv_dim, conv_kernel_size, device=device, dtype=dtype) |
|
] |
|
self.ssm_states += [ |
|
torch.zeros(batch_size, intermediate_size, ssm_state_size, device=device, dtype=dtype) |
|
] |
|
else: |
|
self.conv_states += [torch.tensor([[]] * batch_size, device=device)] |
|
self.ssm_states += [torch.tensor([[]] * batch_size, device=device)] |
|
|
|
self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)] |
|
self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)] |
|
|
|
self.mamba_past_length = [0 for _ in range(config.num_hidden_layers)] |
|
|
|
def update( |
|
self, |
|
key_states: torch.Tensor, |
|
value_states: torch.Tensor, |
|
layer_idx: int, |
|
cache_kwargs: Optional[Dict[str, Any]] = None, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
|
if self.key_cache[layer_idx].shape[-1] == 0: |
|
self.key_cache[layer_idx] = key_states |
|
self.value_cache[layer_idx] = value_states |
|
else: |
|
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=2) |
|
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=2) |
|
|
|
return self.key_cache[layer_idx], self.value_cache[layer_idx] |
|
|
|
def reorder_cache(self, beam_idx: torch.LongTensor): |
|
"""Reorders the cache for beam search, given the selected beam indices.""" |
|
for layer_idx in range(len(self.key_cache)): |
|
device = self.key_cache[layer_idx].device |
|
self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device)) |
|
device = self.value_cache[layer_idx].device |
|
self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device)) |
|
|
|
device = self.conv_states[layer_idx].device |
|
self.conv_states[layer_idx] = self.conv_states[layer_idx].index_select(0, beam_idx.to(device)) |
|
device = self.ssm_states[layer_idx].device |
|
self.ssm_states[layer_idx] = self.ssm_states[layer_idx].index_select(0, beam_idx.to(device)) |
|
|
|
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int: |
|
"""Returns the sequence length of the cached states. A layer index can be optionally passed.""" |
|
|
|
|
|
if self.layer_type[layer_idx] == 'm': |
|
return self.mamba_past_length[layer_idx] |
|
|
|
if self.key_cache[layer_idx].shape[-1] == 0: |
|
return 0 |
|
|
|
return self.key_cache[layer_idx].shape[-2] |
|
|
|
def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]: |
|
raise NotImplementedError("HybridMambaAttentionDynamicCache does not have a legacy cache equivalent.") |
|
|
|
@classmethod |
|
def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache": |
|
raise NotImplementedError("HybridMambaAttentionDynamicCache does not have a legacy cache equivalent.") |
|
|
|
|
|
@dataclass |
|
class MambaCacheParams: |
|
seqlen_offset: int = 0 |
|
conv_states: Dict[int, torch.Tensor] = field(default_factory=dict) |
|
ssm_states: Dict[int, torch.Tensor] = field(default_factory=dict) |
|
|
|
|
|
|
|
|
|
class HymbaAttention(nn.Module): |
|
""" |
|
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer |
|
and "Generating Long Sequences with Sparse Transformers". |
|
""" |
|
|
|
def __init__(self, config: HymbaConfig, layer_idx: Optional[int] = None, reuse_kv=False, output_hidden_size=None, attn_only_wo_proj=False): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
if layer_idx is None: |
|
logger.warning_once( |
|
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " |
|
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " |
|
"when creating this class." |
|
) |
|
|
|
|
|
self.hidden_size = config.attn_hidden_size if config.attn_hidden_size > 0 else config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.rope_theta = config.rope_theta |
|
|
|
self.attn_only_wo_proj = attn_only_wo_proj |
|
|
|
self.kq_head_dim = config.kq_head_dim if config.kq_head_dim > 0 else self.head_dim |
|
self.v_head_dim = config.v_head_dim if config.v_head_dim > 0 else self.head_dim |
|
|
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.is_causal = True |
|
self.attention_dropout = config.attention_dropout |
|
|
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
f" and `num_heads`: {self.num_heads})." |
|
) |
|
|
|
if not self.attn_only_wo_proj: |
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.kq_head_dim, bias=False) |
|
|
|
self.reuse_kv = reuse_kv |
|
|
|
if not self.attn_only_wo_proj and not self.reuse_kv: |
|
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.kq_head_dim, bias=False) |
|
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.v_head_dim, bias=False) |
|
|
|
if output_hidden_size is None: |
|
output_hidden_size = self.hidden_size |
|
|
|
if not self.attn_only_wo_proj: |
|
self.o_proj = nn.Linear(self.num_heads * self.v_head_dim, output_hidden_size, bias=False) |
|
|
|
if self.config.kq_norm == "rms": |
|
self.k_norm = HymbaRMSNorm(self.kq_head_dim) |
|
self.q_norm = HymbaRMSNorm(self.kq_head_dim) |
|
elif self.config.kq_norm == "perhead-rms": |
|
self.k_norm = PerheadHymbaRMSNorm(self.kq_head_dim, self.num_key_value_heads) |
|
self.q_norm = PerheadHymbaRMSNorm(self.kq_head_dim, self.num_heads) |
|
elif self.config.kq_norm == "none": |
|
self.k_norm = None |
|
self.q_norm = None |
|
else: |
|
raise NotImplementedError(f"Unknown kq_norm: {self.config.kq_norm}") |
|
|
|
if self.config.rope: |
|
self._init_rope() |
|
|
|
|
|
def set_rope(self, rope_type, orig_max_position_embeddings, max_position_embeddings): |
|
self.config.rope_type = rope_type |
|
self.config.orig_max_position_embeddings = orig_max_position_embeddings |
|
self.config.max_position_embeddings = max_position_embeddings |
|
|
|
self._init_rope() |
|
|
|
|
|
def _init_rope(self): |
|
self.rotary_emb = LlamaRotaryEmbedding( |
|
config=self.config, |
|
dim=self.kq_head_dim, |
|
base=self.rope_theta, |
|
device=torch.device("cuda"), |
|
) |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
kv_last_layer = None, |
|
|
|
use_swa=False, |
|
query_states = None, |
|
key_states=None, |
|
value_states=None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
raise NotImplementedError("HymbaAttention is an abstract class. Use one of the subclasses.") |
|
|
|
|
|
|
|
class HymbaFlashAttention2(HymbaAttention): |
|
""" |
|
Hymba flash attention module. This module inherits from `HymbaAttention` as the weights of the module stays |
|
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of |
|
flash attention and deal with padding tokens in case the input contains any of them. |
|
""" |
|
|
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
kv_last_layer=None, |
|
|
|
use_swa=False, |
|
query_states = None, |
|
key_states=None, |
|
value_states=None, |
|
**kwargs, |
|
): |
|
|
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" |
|
) |
|
|
|
|
|
attention_mask = kwargs.pop("padding_mask") |
|
|
|
if self.attn_only_wo_proj: |
|
assert query_states is not None |
|
bsz, q_len, _ = query_states.size() |
|
else: |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
if not self.attn_only_wo_proj: |
|
query_states = self.q_proj(hidden_states) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
if self.q_norm is not None: |
|
query_states = self.q_norm(query_states) |
|
|
|
if self.config.rope: |
|
if self.attn_only_wo_proj: |
|
cos, sin = self.rotary_emb(query_states, position_ids) |
|
else: |
|
cos, sin = self.rotary_emb(hidden_states, position_ids) |
|
query_states, _ = apply_rotary_pos_emb(query_states, None, cos, sin) |
|
|
|
|
|
if self.reuse_kv: |
|
assert kv_last_layer is not None |
|
key_states, value_states = kv_last_layer |
|
|
|
else: |
|
if not self.attn_only_wo_proj: |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.kq_head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.v_head_dim).transpose(1, 2) |
|
|
|
if self.k_norm is not None: |
|
key_states = self.k_norm(key_states) |
|
|
|
if self.config.rope: |
|
_, key_states = apply_rotary_pos_emb(None, key_states, cos, sin) |
|
|
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None and not self.reuse_kv: |
|
if self.layer_idx is None: |
|
raise ValueError( |
|
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " |
|
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " |
|
"with a layer index." |
|
) |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
|
|
use_sliding_windows = ( |
|
_flash_supports_window_size |
|
and getattr(self.config, "sliding_window", None) is not None |
|
and kv_seq_len > (self.config.sliding_window + self.config.num_memory_tokens if self.config.num_memory_tokens > 0 else self.config.sliding_window) |
|
and use_swa |
|
) |
|
|
|
if not _flash_supports_window_size: |
|
logger.warning_once( |
|
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation" |
|
" make sure to upgrade flash-attn library." |
|
) |
|
|
|
swa_processed_flag = False |
|
if past_key_value is not None and use_cache and not self.reuse_kv: |
|
kv_layer_idx = self.layer_idx |
|
|
|
cache_has_contents = past_key_value.get_seq_length(kv_layer_idx) > 0 |
|
|
|
if ( |
|
getattr(self.config, "sliding_window", None) is not None |
|
and kv_seq_len > (self.config.sliding_window + self.config.num_memory_tokens if self.config.num_memory_tokens > 0 else self.config.sliding_window) |
|
and cache_has_contents |
|
and use_swa |
|
): |
|
slicing_tokens = 1 - self.config.sliding_window |
|
|
|
past_key = past_key_value[kv_layer_idx][0] |
|
past_value = past_key_value[kv_layer_idx][1] |
|
|
|
if self.config.num_memory_tokens > 0: |
|
|
|
num_fetched_memory_tokens = self.config.num_memory_tokens |
|
|
|
past_key = torch.cat([past_key[:, :, :num_fetched_memory_tokens, :], past_key[:, :, slicing_tokens:, :]], dim=-2).contiguous() |
|
past_value = torch.cat([past_value[:, :, :num_fetched_memory_tokens, :], past_value[:, :, slicing_tokens:, :]], dim=-2).contiguous() |
|
|
|
else: |
|
past_key = past_key[:, :, slicing_tokens:, :].contiguous() |
|
past_value = past_value[:, :, slicing_tokens:, :].contiguous() |
|
|
|
past_key_value.key_cache[kv_layer_idx] = past_key |
|
past_key_value.value_cache[kv_layer_idx] = past_value |
|
|
|
if attention_mask is not None: |
|
attention_mask = attention_mask[:, slicing_tokens:] |
|
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) |
|
|
|
swa_processed_flag = True |
|
|
|
key_states, value_states = past_key_value.update(key_states, value_states, kv_layer_idx) |
|
|
|
|
|
key_states_no_repeat = key_states |
|
value_states_no_repeat = value_states |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
dropout_rate = 0.0 if not self.training else self.attention_dropout |
|
|
|
input_dtype = query_states.dtype |
|
if input_dtype == torch.float32: |
|
if torch.is_autocast_enabled(): |
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
|
|
elif hasattr(self.config, "_pre_quantization_dtype"): |
|
target_dtype = self.config._pre_quantization_dtype |
|
else: |
|
target_dtype = self.q_proj.weight.dtype |
|
|
|
logger.warning_once( |
|
f"The input hidden states seems to be silently casted in float32, this might be related to" |
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" |
|
f" {target_dtype}." |
|
) |
|
|
|
query_states = query_states.to(target_dtype) |
|
key_states = key_states.to(target_dtype) |
|
value_states = value_states.to(target_dtype) |
|
|
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
attn_output = self._flash_attention_forward( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
q_len, |
|
dropout=dropout_rate, |
|
use_sliding_windows=use_sliding_windows and not swa_processed_flag, |
|
) |
|
|
|
v_dim = value_states.shape[-2] * value_states.shape[-1] |
|
attn_output = attn_output.reshape(bsz, q_len, v_dim).contiguous() |
|
|
|
if self.attn_only_wo_proj: |
|
return attn_output, (key_states_no_repeat, value_states_no_repeat) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value, (key_states_no_repeat, value_states_no_repeat) |
|
|
|
def _flash_attention_forward( |
|
self, |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
query_length, |
|
dropout=0.0, |
|
softmax_scale=None, |
|
use_sliding_windows=False, |
|
): |
|
""" |
|
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token |
|
first unpad the input, then computes the attention scores and pad the final attention scores. |
|
|
|
Args: |
|
query_states (`torch.Tensor`): |
|
Input query states to be passed to Flash Attention API |
|
key_states (`torch.Tensor`): |
|
Input key states to be passed to Flash Attention API |
|
value_states (`torch.Tensor`): |
|
Input value states to be passed to Flash Attention API |
|
attention_mask (`torch.Tensor`): |
|
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the |
|
position of padding tokens and 1 for the position of non-padding tokens. |
|
dropout (`int`, *optional*): |
|
Attention dropout |
|
softmax_scale (`float`, *optional*): |
|
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) |
|
use_sliding_windows (`bool`, *optional*): |
|
Whether to activate sliding window attention. |
|
""" |
|
if not self._flash_attn_uses_top_left_mask: |
|
causal = self.is_causal |
|
else: |
|
causal = self.is_causal and query_length != 1 |
|
|
|
|
|
if attention_mask is not None: |
|
if value_states.shape[-1] == query_states.shape[-1] * 2: |
|
value_states1 = value_states[...,:query_states.shape[-1]] |
|
|
|
batch_size = query_states.shape[0] |
|
|
|
query_states1, key_states1, value_states1, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( |
|
query_states, key_states, value_states1, attention_mask, query_length |
|
) |
|
|
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens |
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens |
|
|
|
if not use_sliding_windows: |
|
attn_output_unpad1 = flash_attn_varlen_func( |
|
query_states1, |
|
key_states1, |
|
value_states1, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
) |
|
else: |
|
attn_output_unpad1 = flash_attn_varlen_func( |
|
query_states1, |
|
key_states1, |
|
value_states1, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
window_size=(self.config.sliding_window, self.config.sliding_window), |
|
) |
|
|
|
attn_output1 = pad_input(attn_output_unpad1, indices_q, batch_size, query_length) |
|
|
|
value_states2 = value_states[...,query_states.shape[-1]:] |
|
|
|
query_states2, key_states2, value_states2, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( |
|
query_states, key_states, value_states2, attention_mask, query_length |
|
) |
|
|
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens |
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens |
|
|
|
if not use_sliding_windows: |
|
attn_output_unpad2 = flash_attn_varlen_func( |
|
query_states2, |
|
key_states2, |
|
value_states2, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
) |
|
else: |
|
attn_output_unpad2 = flash_attn_varlen_func( |
|
query_states2, |
|
key_states2, |
|
value_states2, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
window_size=(self.config.sliding_window, self.config.sliding_window), |
|
) |
|
|
|
attn_output2 = pad_input(attn_output_unpad2, indices_q, batch_size, query_length) |
|
|
|
attn_output = torch.cat([attn_output1, attn_output2], dim=-1) |
|
|
|
else: |
|
batch_size = query_states.shape[0] |
|
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( |
|
query_states, key_states, value_states, attention_mask, query_length |
|
) |
|
|
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens |
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens |
|
|
|
if not use_sliding_windows: |
|
attn_output_unpad = flash_attn_varlen_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
) |
|
else: |
|
attn_output_unpad = flash_attn_varlen_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
window_size=(self.config.sliding_window, self.config.sliding_window), |
|
) |
|
|
|
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) |
|
else: |
|
if value_states.shape[-1] == query_states.shape[-1] * 2: |
|
if not use_sliding_windows: |
|
attn_output1 = flash_attn_func( |
|
query_states, |
|
key_states, |
|
value_states[...,:query_states.shape[-1]], |
|
dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
) |
|
|
|
attn_output2 = flash_attn_func( |
|
query_states, |
|
key_states, |
|
value_states[...,query_states.shape[-1]:], |
|
dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
) |
|
|
|
attn_output = torch.cat([attn_output1, attn_output2], dim=-1) |
|
|
|
else: |
|
attn_output1 = flash_attn_func( |
|
query_states, |
|
key_states, |
|
value_states[...,:query_states.shape[-1]], |
|
dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
window_size=(self.config.sliding_window, self.config.sliding_window), |
|
) |
|
|
|
attn_output2 = flash_attn_func( |
|
query_states, |
|
key_states, |
|
value_states[...,query_states.shape[-1]:], |
|
dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
window_size=(self.config.sliding_window, self.config.sliding_window), |
|
) |
|
|
|
attn_output = torch.cat([attn_output1, attn_output2], dim=-1) |
|
|
|
else: |
|
if not use_sliding_windows: |
|
attn_output = flash_attn_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
) |
|
else: |
|
attn_output = flash_attn_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
window_size=(self.config.sliding_window, self.config.sliding_window), |
|
) |
|
|
|
return attn_output |
|
|
|
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): |
|
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape |
|
|
|
|
|
|
|
if kv_seq_len != attention_mask.shape[-1]: |
|
attention_mask_num_tokens = attention_mask.shape[-1] |
|
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :] |
|
|
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) |
|
|
|
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) |
|
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) |
|
|
|
if query_length == kv_seq_len: |
|
query_layer = index_first_axis( |
|
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k |
|
) |
|
cu_seqlens_q = cu_seqlens_k |
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k |
|
indices_q = indices_k |
|
elif query_length == 1: |
|
max_seqlen_in_batch_q = 1 |
|
cu_seqlens_q = torch.arange( |
|
batch_size + 1, dtype=torch.int32, device=query_layer.device |
|
) |
|
indices_q = cu_seqlens_q[:-1] |
|
query_layer = query_layer.squeeze(1) |
|
else: |
|
|
|
attention_mask = attention_mask[:, -query_length:] |
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) |
|
|
|
return ( |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
indices_q, |
|
(cu_seqlens_q, cu_seqlens_k), |
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), |
|
) |
|
|
|
|
|
|
|
|
|
class HymbaSdpaAttention(HymbaAttention): |
|
""" |
|
Hymba attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from |
|
`HymbaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to |
|
SDPA API. |
|
""" |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
kv_last_layer=None, |
|
|
|
use_swa=False, |
|
query_states = None, |
|
key_states=None, |
|
value_states=None, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
|
if output_attentions: |
|
return super().forward( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
if self.attn_only_wo_proj: |
|
assert query_states is not None |
|
bsz, q_len, _ = query_states.size() |
|
else: |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
if not self.attn_only_wo_proj: |
|
query_states = self.q_proj(hidden_states) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.kq_head_dim).transpose(1, 2).contiguous() |
|
|
|
if self.q_norm is not None: |
|
query_states = self.q_norm(query_states) |
|
|
|
if self.config.rope: |
|
if self.attn_only_wo_proj: |
|
cos, sin = self.rotary_emb(query_states, position_ids) |
|
else: |
|
cos, sin = self.rotary_emb(hidden_states, position_ids) |
|
query_states, _ = apply_rotary_pos_emb(query_states, None, cos, sin) |
|
|
|
if self.reuse_kv: |
|
assert kv_last_layer is not None |
|
key_states, value_states = kv_last_layer |
|
|
|
else: |
|
if not self.attn_only_wo_proj: |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.kq_head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.v_head_dim).transpose(1, 2) |
|
|
|
if self.k_norm is not None: |
|
key_states = self.k_norm(key_states) |
|
|
|
if self.config.rope: |
|
_, key_states = apply_rotary_pos_emb(None, key_states, cos, sin) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None and not self.reuse_kv and use_cache: |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx) |
|
|
|
key_states_no_repeat = key_states |
|
value_states_no_repeat = value_states |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
|
|
|
|
|
|
if query_states.device.type == "cuda" and attention_mask is not None: |
|
query_states = query_states.contiguous() |
|
key_states = key_states.contiguous() |
|
value_states = value_states.contiguous() |
|
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attn_mask=attention_mask, |
|
dropout_p=self.attention_dropout if self.training else 0.0, |
|
|
|
is_causal=self.is_causal and attention_mask is None and q_len > 1, |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.reshape(bsz, q_len, self.v_head_dim * self.num_heads) |
|
|
|
if self.attn_only_wo_proj: |
|
return attn_output, (key_states_no_repeat, value_states_no_repeat) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
return attn_output, None, past_key_value, (key_states_no_repeat, value_states_no_repeat) |
|
|
|
|
|
|
|
|
|
|
|
class HymbaFlexAttention(HymbaFlashAttention2): |
|
""" |
|
Hymba flash attention module. This module inherits from `HymbaAttention` as the weights of the module stays |
|
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of |
|
flash attention and deal with padding tokens in case the input contains any of them. |
|
""" |
|
|
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
assert self.config.num_memory_tokens > 0 |
|
|
|
|
|
from torch.nn.attention.flex_attention import flex_attention, create_block_mask, and_masks, or_masks |
|
from functools import partial |
|
|
|
self.create_block_mask = create_block_mask |
|
|
|
def sliding_window(b, h, q_idx, kv_idx): |
|
return q_idx - kv_idx <= self.config.sliding_window |
|
|
|
def causal_mask(b, h, q_idx, kv_idx): |
|
return q_idx >= kv_idx |
|
|
|
if self.config.sliding_window is not None and self.config.global_attn_idx is not None and self.layer_idx not in self.config.global_attn_idx: |
|
attn_mask = and_masks(causal_mask, sliding_window) |
|
else: |
|
attn_mask = causal_mask |
|
|
|
if self.config.memory_tokens_interspersed_every > 0: |
|
|
|
num_memory_band = self.config.seq_length // self.config.memory_tokens_interspersed_every |
|
qk_length = self.config.seq_length + num_memory_band * self.config.num_memory_tokens |
|
num_tokens_per_band = qk_length // num_memory_band |
|
|
|
for i in range(num_memory_band): |
|
left_mask = lambda b, h, q_idx, kv_idx, i=i: kv_idx > i * num_tokens_per_band |
|
right_mask = lambda b, h, q_idx, kv_idx, i=i: kv_idx < i * num_tokens_per_band + self.config.num_memory_tokens |
|
|
|
band_mask = and_masks(left_mask, right_mask) |
|
|
|
if i == 0: |
|
prefix_mask_interspersed = band_mask |
|
else: |
|
prefix_mask_interspersed = or_masks(prefix_mask_interspersed, band_mask) |
|
|
|
register_mask = and_masks(causal_mask, prefix_mask_interspersed) |
|
else: |
|
def prefix_mask(b, h, q_idx, kv_idx): |
|
return kv_idx < self.config.num_memory_tokens |
|
|
|
register_mask = and_masks(causal_mask, prefix_mask) |
|
qk_length = self.config.seq_length + self.config.num_memory_tokens |
|
|
|
self.attn_mask = or_masks(attn_mask, register_mask) |
|
|
|
self.block_mask = create_block_mask(self.attn_mask, B=None, H=None, Q_LEN=qk_length, KV_LEN=qk_length, _compile=True) |
|
|
|
self.flex_attention = torch.compile(flex_attention) |
|
|
|
|
|
def recompile_flexattn(self): |
|
from torch.nn.attention.flex_attention import flex_attention |
|
self.flex_attention = torch.compile(flex_attention) |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
kv_last_layer=None, |
|
|
|
use_swa=False, |
|
query_states = None, |
|
key_states=None, |
|
value_states=None, |
|
**kwargs, |
|
): |
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" |
|
) |
|
|
|
attention_mask = kwargs.pop("padding_mask") |
|
|
|
if self.attn_only_wo_proj: |
|
assert query_states is not None |
|
bsz, q_len, _ = query_states.size() |
|
else: |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
if not self.attn_only_wo_proj: |
|
query_states = self.q_proj(hidden_states) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
if self.q_norm is not None: |
|
query_states = self.q_norm(query_states) |
|
|
|
if self.config.rope: |
|
if self.attn_only_wo_proj: |
|
cos, sin = self.rotary_emb(query_states, position_ids) |
|
else: |
|
cos, sin = self.rotary_emb(hidden_states, position_ids) |
|
query_states, _ = apply_rotary_pos_emb(query_states, None, cos, sin) |
|
|
|
if self.reuse_kv: |
|
assert kv_last_layer is not None |
|
key_states, value_states = kv_last_layer |
|
|
|
else: |
|
if not self.attn_only_wo_proj: |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.kq_head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.v_head_dim).transpose(1, 2) |
|
|
|
if self.k_norm is not None: |
|
key_states = self.k_norm(key_states) |
|
|
|
if self.config.rope: |
|
|
|
_, key_states = apply_rotary_pos_emb(None, key_states, cos, sin) |
|
|
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None and not self.reuse_kv: |
|
if self.layer_idx is None: |
|
raise ValueError( |
|
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " |
|
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " |
|
"with a layer index." |
|
) |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
|
|
use_sliding_windows = ( |
|
_flash_supports_window_size |
|
and getattr(self.config, "sliding_window", None) is not None |
|
and kv_seq_len > (self.config.sliding_window + self.config.num_memory_tokens if self.config.num_memory_tokens > 0 else self.config.sliding_window) |
|
and use_swa |
|
) |
|
|
|
if not _flash_supports_window_size: |
|
logger.warning_once( |
|
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation" |
|
" make sure to upgrade flash-attn library." |
|
) |
|
|
|
swa_processed_flag = False |
|
if past_key_value is not None and use_cache and not self.reuse_kv: |
|
kv_layer_idx = self.layer_idx |
|
|
|
cache_has_contents = past_key_value.get_seq_length(kv_layer_idx) > 0 |
|
|
|
if ( |
|
getattr(self.config, "sliding_window", None) is not None |
|
and kv_seq_len > (self.config.sliding_window + self.config.num_memory_tokens if self.config.num_memory_tokens > 0 else self.config.sliding_window) |
|
and cache_has_contents |
|
and use_swa |
|
): |
|
slicing_tokens = 1 - self.config.sliding_window |
|
|
|
past_key = past_key_value[kv_layer_idx][0] |
|
past_value = past_key_value[kv_layer_idx][1] |
|
|
|
if self.config.num_memory_tokens > 0: |
|
|
|
num_fetched_memory_tokens = self.config.num_memory_tokens |
|
|
|
past_key = torch.cat([past_key[:, :, :num_fetched_memory_tokens, :], past_key[:, :, slicing_tokens:, :]], dim=-2).contiguous() |
|
past_value = torch.cat([past_value[:, :, :num_fetched_memory_tokens, :], past_value[:, :, slicing_tokens:, :]], dim=-2).contiguous() |
|
|
|
else: |
|
past_key = past_key[:, :, slicing_tokens:, :].contiguous() |
|
past_value = past_value[:, :, slicing_tokens:, :].contiguous() |
|
|
|
|
|
past_key_value.key_cache[kv_layer_idx] = past_key |
|
past_key_value.value_cache[kv_layer_idx] = past_value |
|
|
|
if attention_mask is not None: |
|
attention_mask = attention_mask[:, slicing_tokens:] |
|
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) |
|
|
|
swa_processed_flag = True |
|
|
|
key_states, value_states = past_key_value.update(key_states, value_states, kv_layer_idx) |
|
|
|
|
|
else: |
|
cache_has_contents = False |
|
|
|
|
|
|
|
key_states_no_repeat = key_states |
|
value_states_no_repeat = value_states |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
dropout_rate = 0.0 if not self.training else self.attention_dropout |
|
|
|
input_dtype = query_states.dtype |
|
if input_dtype == torch.float32: |
|
if torch.is_autocast_enabled(): |
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
|
|
elif hasattr(self.config, "_pre_quantization_dtype"): |
|
target_dtype = self.config._pre_quantization_dtype |
|
else: |
|
target_dtype = self.q_proj.weight.dtype |
|
|
|
logger.warning_once( |
|
f"The input hidden states seems to be silently casted in float32, this might be related to" |
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" |
|
f" {target_dtype}." |
|
) |
|
|
|
query_states = query_states.to(target_dtype) |
|
key_states = key_states.to(target_dtype) |
|
value_states = value_states.to(target_dtype) |
|
|
|
|
|
if past_key_value is not None and use_cache and (not use_swa or query_states.shape[-2] <= self.config.sliding_window): |
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
attn_output = self._flash_attention_forward( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
q_len, |
|
dropout=dropout_rate, |
|
use_sliding_windows=use_sliding_windows and not swa_processed_flag, |
|
) |
|
|
|
v_dim = value_states.shape[-2] * value_states.shape[-1] |
|
attn_output = attn_output.reshape(bsz, q_len, v_dim).contiguous() |
|
|
|
else: |
|
if key_states.shape[-2] <= self.block_mask.shape[-2] - 128 or key_states.shape[-2] > self.block_mask.shape[-2]: |
|
block_mask = self.create_block_mask(self.attn_mask, B=None, H=None, Q_LEN=key_states.shape[-2], KV_LEN=key_states.shape[-2]) |
|
else: |
|
block_mask = self.block_mask |
|
|
|
if value_states.shape[-1] == query_states.shape[-1] * 2: |
|
attn_output1 = self.flex_attention(query_states, key_states, value_states[...,:query_states.shape[-1]], block_mask=block_mask) |
|
attn_output2 = self.flex_attention(query_states, key_states, value_states[...,query_states.shape[-1]:], block_mask=block_mask) |
|
|
|
attn_output = torch.cat([attn_output1, attn_output2], dim=-1) |
|
else: |
|
attn_output = self.flex_attention(query_states, key_states, value_states, block_mask=block_mask) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
if hasattr(self, 'head_mask') and self.head_mask is not None: |
|
head_mask = self.head_mask.to(attn_output) |
|
head_mask = head_mask.view(1, 1, -1, 1) |
|
attn_output = attn_output * head_mask |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.v_head_dim * self.num_heads) |
|
|
|
if self.attn_only_wo_proj: |
|
return attn_output, (key_states_no_repeat, value_states_no_repeat) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value, (key_states_no_repeat, value_states_no_repeat) |
|
|
|
def set_head_mask(self, mask): |
|
self.head_mask = mask |
|
|
|
|
|
JAMBA_ATTENTION_CLASSES = { |
|
"eager": HymbaAttention, |
|
"flash_attention_2": HymbaFlashAttention2, |
|
"sdpa": HymbaSdpaAttention, |
|
"flex": HymbaFlexAttention, |
|
} |
|
|
|
|
|
|
|
class HymbaBlock(nn.Module): |
|
""" |
|
Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`. |
|
A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective) |
|
∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4, |
|
and is why Mamba is called **selective** state spaces) |
|
""" |
|
|
|
def __init__(self, config: HymbaConfig, layer_idx, reuse_kv=None): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
self.hidden_size = config.hidden_size |
|
self.ssm_state_size = config.mamba_d_state |
|
self.conv_kernel_size = config.mamba_d_conv |
|
|
|
self.intermediate_size = int(config.mamba_expand * config.hidden_size) |
|
|
|
self.reuse_kv = reuse_kv |
|
|
|
self.attn_hidden_size = config.hidden_size |
|
self.num_attention_heads = config.num_attention_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
|
|
config.v_head_dim = self.intermediate_size // self.num_attention_heads |
|
|
|
self.k_hidden_size = int(self.num_key_value_heads/self.num_attention_heads * self.attn_hidden_size) |
|
self.v_hidden_size = int(self.num_key_value_heads/self.num_attention_heads * self.attn_hidden_size * config.mamba_expand) |
|
|
|
self.self_attn = JAMBA_ATTENTION_CLASSES[config.attn_implementation](config, layer_idx, attn_only_wo_proj=True, reuse_kv=reuse_kv) |
|
|
|
self.time_step_rank = config.mamba_dt_rank |
|
self.use_conv_bias = config.mamba_conv_bias |
|
self.use_bias = config.mamba_proj_bias |
|
|
|
self.activation = config.hidden_act |
|
self.act = ACT2FN[config.hidden_act] |
|
self.apply_inner_layernorms = config.mamba_inner_layernorms |
|
|
|
self.use_fast_kernels = True |
|
|
|
if self.reuse_kv: |
|
self.latent_dim = self.intermediate_size + self.attn_hidden_size |
|
else: |
|
self.latent_dim = self.intermediate_size + self.attn_hidden_size + self.k_hidden_size + self.v_hidden_size |
|
|
|
self.pre_avg_layernorm1 = HymbaRMSNorm(self.intermediate_size, eps=config.rms_norm_eps) |
|
self.pre_avg_layernorm2 = HymbaRMSNorm(self.intermediate_size, eps=config.rms_norm_eps) |
|
|
|
self.in_proj = nn.Linear(self.hidden_size, self.latent_dim + self.intermediate_size, bias=self.use_bias) |
|
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=self.use_bias) |
|
|
|
num_ssm_param = 1 |
|
|
|
if not hasattr(config, 'conv_dim'): |
|
config.conv_dim = {i:0 for i in range(config.num_hidden_layers)} |
|
|
|
self.conv1d = nn.Conv1d( |
|
in_channels=self.intermediate_size, |
|
out_channels=self.intermediate_size, |
|
bias=self.use_conv_bias, |
|
kernel_size=self.conv_kernel_size, |
|
groups=self.intermediate_size, |
|
padding=self.conv_kernel_size - 1 |
|
) |
|
|
|
config.conv_dim[self.layer_idx] = self.intermediate_size |
|
|
|
self.x_proj = nn.ModuleList([nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False) for _ in range(num_ssm_param)]) |
|
self.dt_proj = nn.ModuleList([nn.Linear(self.time_step_rank, self.intermediate_size, bias=True) for _ in range(num_ssm_param)]) |
|
|
|
A = torch.arange(1, self.ssm_state_size + 1, dtype=torch.float32)[None, :] |
|
A = A.expand(self.intermediate_size, -1).contiguous() |
|
self.A_log = nn.ParameterList([nn.Parameter(torch.log(A)) for _ in range(num_ssm_param)]) |
|
|
|
self.D = nn.ParameterList([nn.Parameter(torch.ones(self.intermediate_size)) for _ in range(num_ssm_param)]) |
|
|
|
if self.apply_inner_layernorms: |
|
self.dt_layernorm = HymbaRMSNorm(self.time_step_rank, eps=config.rms_norm_eps) |
|
self.B_layernorm = HymbaRMSNorm(self.ssm_state_size, eps=config.rms_norm_eps) |
|
self.C_layernorm = HymbaRMSNorm(self.ssm_state_size, eps=config.rms_norm_eps) |
|
|
|
else: |
|
self.dt_layernorm = None |
|
self.B_layernorm = None |
|
self.C_layernorm = None |
|
|
|
if not is_fast_path_available: |
|
logger.warning_once( |
|
"The fast path is not available because on of `(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)`" |
|
" is None. To install follow https://github.com/state-spaces/mamba/#installation and" |
|
" https://github.com/Dao-AILab/causal-conv1d. If you want to use the naive implementation, set `use_mamba_kernels=False` in the model config" |
|
) |
|
|
|
def set_attn_mamba_mask(self, attn_branch_mask, mamba_branch_mask): |
|
self.attn_branch_mask = attn_branch_mask |
|
self.mamba_branch_mask = mamba_branch_mask |
|
|
|
|
|
def _apply_layernorms(self, dt, B, C): |
|
if self.dt_layernorm is not None: |
|
dt = self.dt_layernorm(dt) |
|
if self.B_layernorm is not None: |
|
B = self.B_layernorm(B) |
|
if self.C_layernorm is not None: |
|
C = self.C_layernorm(C) |
|
return dt, B, C |
|
|
|
def cuda_kernels_forward(self, hidden_states: torch.Tensor, cache_params: HybridMambaAttentionDynamicCache = None, attention_mask=None, position_ids=None, kv_last_layer=None, use_cache=False, use_swa=False): |
|
projected_states = self.in_proj(hidden_states).transpose(1, 2) |
|
|
|
if ( |
|
self.training and cache_params is None and not self.apply_inner_layernorms |
|
): |
|
contextualized_states = mamba_inner_fn( |
|
projected_states, |
|
self.conv1d.weight, |
|
self.conv1d.bias if self.use_conv_bias else None, |
|
self.x_proj.weight, |
|
self.dt_proj.weight, |
|
self.out_proj.weight, |
|
self.out_proj.bias.float() if self.use_bias else None, |
|
-torch.exp(self.A_log.float()), |
|
None, |
|
None, |
|
self.D.float(), |
|
delta_bias=self.dt_proj.bias.float(), |
|
delta_softplus=True, |
|
) |
|
|
|
else: |
|
batch_size, seq_len, _ = hidden_states.shape |
|
use_precomputed_states = ( |
|
cache_params is not None |
|
and cache_params.has_previous_state |
|
and seq_len == 1 |
|
and cache_params.conv_states[self.layer_idx].shape[0] |
|
== cache_params.ssm_states[self.layer_idx].shape[0] |
|
== batch_size |
|
and use_cache |
|
) |
|
|
|
hidden_states, gate = projected_states.tensor_split((self.latent_dim,), dim=1) |
|
|
|
conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2)) |
|
|
|
if self.reuse_kv: |
|
query_states, hidden_states = hidden_states.tensor_split((self.attn_hidden_size,), dim=1) |
|
query_states = query_states.transpose(1,2) |
|
else: |
|
query_states, key_states, value_states, hidden_states = hidden_states.tensor_split((self.attn_hidden_size, self.attn_hidden_size + self.k_hidden_size, self.attn_hidden_size + self.k_hidden_size + self.v_hidden_size), dim=1) |
|
|
|
query_states = query_states.transpose(1,2) |
|
key_states = key_states.transpose(1,2) |
|
value_states = value_states.transpose(1,2) |
|
|
|
if use_precomputed_states: |
|
hidden_states = causal_conv1d_update( |
|
hidden_states.squeeze(-1), |
|
cache_params.conv_states[self.layer_idx], |
|
conv_weights, |
|
self.conv1d.bias, |
|
self.activation, |
|
) |
|
hidden_states = hidden_states.unsqueeze(-1) |
|
|
|
cache_params.mamba_past_length[self.layer_idx] += seq_len |
|
else: |
|
if cache_params is not None: |
|
conv_states = nn.functional.pad( |
|
hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0) |
|
) |
|
|
|
cache_params.conv_states[self.layer_idx].copy_(conv_states) |
|
|
|
cache_params.mamba_past_length[self.layer_idx] += seq_len |
|
|
|
hidden_states = causal_conv1d_fn( |
|
hidden_states, conv_weights, self.conv1d.bias, activation=self.activation |
|
) |
|
|
|
if self.reuse_kv: |
|
assert kv_last_layer is not None |
|
attn_outputs, attn_key_value = self.self_attn(attention_mask=attention_mask, position_ids=position_ids, query_states=query_states, kv_last_layer=kv_last_layer, use_swa=use_swa, use_cache=use_cache, past_key_value=cache_params) |
|
else: |
|
attn_outputs, attn_key_value = self.self_attn(attention_mask=attention_mask, position_ids=position_ids, query_states=query_states, key_states=key_states, value_states=value_states, use_swa=use_swa, use_cache=use_cache, past_key_value=cache_params) |
|
|
|
|
|
index = 0 |
|
ssm_parameters = self.x_proj[index](hidden_states.transpose(1, 2)) |
|
time_step, B, C = torch.split( |
|
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1 |
|
) |
|
time_step, B, C = self._apply_layernorms(time_step, B, C) |
|
|
|
if hasattr(self.dt_proj[index], "base_layer"): |
|
time_proj_bias = self.dt_proj[index].base_layer.bias |
|
self.dt_proj[index].base_layer.bias = None |
|
else: |
|
time_proj_bias = self.dt_proj[index].bias |
|
self.dt_proj[index].bias = None |
|
discrete_time_step = self.dt_proj[index](time_step).transpose(1, 2) |
|
|
|
if hasattr(self.dt_proj[index], "base_layer"): |
|
self.dt_proj[index].base_layer.bias = time_proj_bias |
|
else: |
|
self.dt_proj[index].bias = time_proj_bias |
|
|
|
A = -torch.exp(self.A_log[index].float()) |
|
|
|
time_proj_bias = time_proj_bias.float() if time_proj_bias is not None else None |
|
if use_precomputed_states: |
|
scan_outputs = selective_state_update( |
|
cache_params.ssm_states[self.layer_idx], |
|
hidden_states[..., 0], |
|
discrete_time_step[..., 0], |
|
A, |
|
B[:, 0], |
|
C[:, 0], |
|
self.D[index], |
|
gate[..., 0], |
|
time_proj_bias, |
|
dt_softplus=True, |
|
).unsqueeze(-1) |
|
else: |
|
outputs = selective_scan_fn( |
|
hidden_states, |
|
discrete_time_step, |
|
A, |
|
B.transpose(1, 2), |
|
C.transpose(1, 2), |
|
self.D[index].float(), |
|
z=gate, |
|
delta_bias=time_proj_bias, |
|
delta_softplus=True, |
|
return_last_state=True, |
|
) |
|
|
|
if len(outputs) == 3: |
|
scan_outputs, ssm_state, _ = outputs |
|
else: |
|
scan_outputs, ssm_state = outputs |
|
|
|
if ssm_state is not None and cache_params is not None: |
|
cache_params.ssm_states[self.layer_idx].copy_(ssm_state) |
|
|
|
scan_outputs = scan_outputs.transpose(1, 2) |
|
|
|
hidden_states = (self.pre_avg_layernorm1(attn_outputs) + self.pre_avg_layernorm2(scan_outputs)) / 2 |
|
contextualized_states = self.out_proj(hidden_states) |
|
|
|
return contextualized_states, attn_key_value |
|
|
|
|
|
def mixer_forward(self, hidden_states, cache_params: HybridMambaAttentionDynamicCache = None, attention_mask=None, position_ids=None, kv_last_layer=None, use_cache=False, use_swa=False): |
|
if self.use_fast_kernels: |
|
if not is_fast_path_available or "cuda" not in self.x_proj[0].weight.device.type: |
|
|
|
raise ValueError( |
|
"Fast Mamba kernels are not available. Make sure to they are installed and that the mamba module is on a CUDA device" |
|
) |
|
return self.cuda_kernels_forward(hidden_states, cache_params, attention_mask=attention_mask, position_ids=position_ids, kv_last_layer=kv_last_layer, use_cache=use_cache, use_swa=use_swa) |
|
else: |
|
raise ValueError("Support Mamba kernel only") |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
past_key_value: Optional[HybridMambaAttentionDynamicCache] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor]]]: |
|
|
|
res, attn_key_value = self.mixer_forward(hidden_states, cache_params=past_key_value, attention_mask=kwargs['attention_mask'], kv_last_layer=kwargs['kv_last_layer'], position_ids=kwargs['position_ids'], use_cache=kwargs['use_cache'], use_swa=kwargs['use_swa']) |
|
|
|
return res, attn_key_value, past_key_value |
|
|
|
|
|
|
|
class HymbaMLP(nn.Module): |
|
def __init__(self, config: HymbaConfig): |
|
super().__init__() |
|
|
|
self.act_fn_name = config.mlp_hidden_act |
|
self.act_fn = ACT2FN[self.act_fn_name] |
|
self.ffn_dim = config.intermediate_size |
|
self.hidden_dim = config.hidden_size |
|
|
|
if self.act_fn_name == "silu": |
|
self.gate_proj = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) |
|
self.down_proj = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False) |
|
self.up_proj = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) |
|
|
|
|
|
def forward(self, x): |
|
if self.act_fn_name == "silu": |
|
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
elif self.act_fn_name == "relu2": |
|
return self.down_proj(self.act_fn(self.up_proj(x))) |
|
else: |
|
raise NotImplementedError(f"No such hidden_act: {self.act_fn_name}") |
|
|
|
|
|
|
|
class HymbaSparseMoeBlock(nn.Module): |
|
""" |
|
This implementation is |
|
strictly equivalent to standard MoE with full capacity (no |
|
dropped tokens). It's faster since it formulates MoE operations |
|
in terms of block-sparse operations to accomodate imbalanced |
|
assignments of tokens to experts, whereas standard MoE either |
|
(1) drop tokens at the cost of reduced performance or (2) set |
|
capacity factor to number of experts and thus waste computation |
|
and memory on padding. |
|
""" |
|
|
|
def __init__(self, config: HymbaConfig, num_experts: int, num_experts_per_tok: int): |
|
super().__init__() |
|
self.hidden_dim = config.hidden_size |
|
self.ffn_dim = config.intermediate_size |
|
|
|
|
|
self.num_experts = num_experts |
|
self.top_k = num_experts_per_tok |
|
|
|
if num_experts > 1: |
|
|
|
self.router = nn.Linear(self.hidden_dim, self.num_experts, bias=False) |
|
else: |
|
self.router = None |
|
|
|
self.experts = nn.ModuleList([HymbaMLP(config) for _ in range(self.num_experts)]) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" """ |
|
if len(hidden_states.shape) == 3: |
|
batch_size, sequence_length, hidden_dim = hidden_states.shape |
|
bs_times_seq_len = batch_size * sequence_length |
|
elif len(hidden_states.shape) == 2: |
|
assert self.num_experts == 1 |
|
bs_times_seq_len, hidden_dim = hidden_states.shape |
|
else: |
|
batch_size, sequence_length, _, hidden_dim = hidden_states.shape |
|
bs_times_seq_len = batch_size * sequence_length |
|
|
|
if self.num_experts == 1: |
|
|
|
final_hidden_states = self.experts[0](hidden_states) |
|
router_logits = torch.ones( |
|
(bs_times_seq_len, 1), |
|
device=hidden_states.device, |
|
dtype=hidden_states.dtype, |
|
requires_grad=hidden_states.requires_grad, |
|
) |
|
return final_hidden_states, router_logits |
|
|
|
|
|
hidden_states = hidden_states.view(-1, hidden_dim) |
|
|
|
router_logits = self.router(hidden_states) |
|
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) |
|
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) |
|
|
|
routing_weights = routing_weights.to(hidden_states.dtype) |
|
|
|
final_hidden_states = torch.zeros( |
|
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device |
|
) |
|
|
|
|
|
|
|
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) |
|
|
|
|
|
for expert_idx in range(self.num_experts): |
|
expert_layer = self.experts[expert_idx] |
|
idx, top_x = torch.where(expert_mask[expert_idx]) |
|
|
|
if top_x.shape[0] == 0: |
|
continue |
|
|
|
|
|
top_x_list = top_x.tolist() |
|
idx_list = idx.tolist() |
|
|
|
|
|
|
|
|
|
current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim) |
|
current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None] |
|
|
|
|
|
|
|
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) |
|
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) |
|
return final_hidden_states, router_logits |
|
|
|
|
|
|
|
class HymbaDecoderLayer(nn.Module): |
|
def __init__(self, config: HymbaConfig, num_experts: int, layer_idx: int, reuse_kv: bool = False): |
|
super().__init__() |
|
|
|
self.config = config |
|
self.layer_idx = layer_idx |
|
self.reuse_kv = reuse_kv |
|
|
|
self.mamba = HymbaBlock(config=config, layer_idx=layer_idx, reuse_kv=reuse_kv) |
|
|
|
self.input_layernorm = HymbaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.intermediate_size = config.intermediate_size |
|
if self.intermediate_size > 0: |
|
num_experts_per_tok = config.num_experts_per_tok if num_experts > 1 else 1 |
|
|
|
self.moe = HymbaSparseMoeBlock(config, num_experts=num_experts, num_experts_per_tok=num_experts_per_tok) |
|
|
|
self.pre_moe_layernorm = HymbaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
attention_mask_raw: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[HybridMambaAttentionDynamicCache] = None, |
|
output_attentions: Optional[bool] = False, |
|
output_router_logits: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
kv_last_layer = None, |
|
use_swa=False, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" |
|
) |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size |
|
`(batch, sequence_length)` where padding elements are indicated by 0. |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
output_router_logits (`bool`, *optional*): |
|
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and |
|
should not be returned during inference. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
""" |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
hidden_states, attn_key_value, present_key_value = self.mamba( |
|
hidden_states=hidden_states, |
|
past_key_value=past_key_value, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
kv_last_layer=kv_last_layer, |
|
use_cache=use_cache, |
|
use_swa=use_swa |
|
) |
|
|
|
bs, seqlen, _ = hidden_states.shape |
|
past_seqlen = self._get_past_seqlen(past_key_value, seqlen) |
|
num_attention_heads = self.mamba.config.num_attention_heads |
|
self_attn_weights = torch.empty(bs, num_attention_heads, seqlen, past_seqlen, device="meta") |
|
|
|
|
|
hidden_states = residual + hidden_states |
|
|
|
if self.intermediate_size > 0: |
|
residual = hidden_states |
|
hidden_states = self.pre_moe_layernorm(hidden_states) |
|
hidden_states, router_logits = self.moe(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
if output_router_logits: |
|
outputs += (router_logits,) |
|
|
|
outputs += (attn_key_value,) |
|
|
|
return outputs |
|
|
|
def _get_past_seqlen(self, past_key_value, seqlen): |
|
if past_key_value is None: |
|
return seqlen |
|
past_seqlen = past_key_value.get_seq_length() |
|
|
|
if past_seqlen == 0: |
|
return seqlen |
|
|
|
return past_seqlen |
|
|
|
|
|
|
|
class HymbaPreTrainedModel(PreTrainedModel): |
|
config_class = HymbaConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["HymbaDecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_cache_class = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, (nn.Linear, nn.Conv1d)): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
@staticmethod |
|
def _convert_to_standard_cache( |
|
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int |
|
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: |
|
""" |
|
Standardizes the format of the cache so as to match most implementations, i.e. have the seqlen as the third dim |
|
also for mamba layers |
|
""" |
|
attn_layer_index = [k.shape == v.shape for k, v in past_key_value].index(True) |
|
seqlen = past_key_value[attn_layer_index][0].shape[2] |
|
standard_past_key_value = () |
|
for k, v in past_key_value: |
|
if k.shape != v.shape: |
|
|
|
|
|
standard_past_key_value += ((k.expand(-1, -1, seqlen, -1), v.expand(-1, -1, seqlen, -1)),) |
|
else: |
|
standard_past_key_value += ((k, v),) |
|
return standard_past_key_value |
|
|
|
@staticmethod |
|
def _convert_to_hymba_cache( |
|
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], |
|
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: |
|
""" |
|
Converts the cache to the format expected by Hymba, i.e. dummy seqlen dimesion with size 1 for mamba layers |
|
""" |
|
hymba_past_key_value = () |
|
for k, v in past_key_value: |
|
if k.shape != v.shape: |
|
|
|
hymba_past_key_value += ((k[:, :, :1, :], v[:, :, :1, :]),) |
|
else: |
|
hymba_past_key_value += ((k, v),) |
|
return hymba_past_key_value |
|
|
|
|
|
|
|
HYMBA_INPUTS_DOCSTRING = r""" |
|
Args: To be added later. Please refer to the forward function. |
|
""" |
|
|
|
|
|
|
|
class HymbaModel(HymbaPreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`HymbaDecoderLayer`] |
|
|
|
Args: |
|
config: HymbaConfig |
|
""" |
|
|
|
def __init__(self, config: HymbaConfig): |
|
super().__init__(config) |
|
config.attn_implementation = config.attn_implementation_new |
|
config._attn_implementation = config.attn_implementation_new |
|
|
|
self.config = config |
|
|
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
|
|
self.inter_layer_kv_reuse = config.kv_reuse_every_i_layer > 0 or config.kv_reuse_group is not None |
|
self.kv_reuse_group = config.kv_reuse_group |
|
self.kv_reuse_every_i_layer = config.kv_reuse_every_i_layer |
|
|
|
decoder_layers = [] |
|
|
|
if self.kv_reuse_group is not None: |
|
self.kv_reuse_group = [{'producer': group[0], 'consumer': group[1:]} for group in self.kv_reuse_group] |
|
|
|
layer_type = [] |
|
for i in range(config.num_hidden_layers): |
|
if self.inter_layer_kv_reuse: |
|
if self.kv_reuse_group is not None: |
|
reuse_kv = False |
|
for group_id, item in enumerate(self.kv_reuse_group): |
|
if i in item['consumer']: |
|
reuse_kv = True |
|
|
|
else: |
|
if i % config.kv_reuse_every_i_layer == 0: |
|
reuse_kv = False |
|
else: |
|
reuse_kv = True |
|
else: |
|
reuse_kv = False |
|
|
|
layer_type.append('h') |
|
decoder_layer = HymbaDecoderLayer(config, num_experts=1, layer_idx=i, reuse_kv=reuse_kv) |
|
|
|
decoder_layers.append(decoder_layer) |
|
|
|
config.layer_type = layer_type |
|
|
|
if config.sliding_window is not None: |
|
self.sliding_window = config.sliding_window |
|
self.global_attn_idx = config.global_attn_idx |
|
else: |
|
self.sliding_window = None |
|
self.global_attn_idx = None |
|
|
|
self._attn_layer_index = [] |
|
self._hymba_layer_index = [isinstance(layer, HymbaDecoderLayer) for layer in decoder_layers].index(True) |
|
|
|
self.layers = nn.ModuleList(decoder_layers) |
|
|
|
self._attn_implementation = config.attn_implementation |
|
self.final_layernorm = HymbaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
if self.config.num_memory_tokens > 0: |
|
self.memory_tokens = nn.Parameter(torch.randn(self.config.num_memory_tokens, self.config.hidden_size)) |
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
|
|
@add_start_docstrings_to_model_forward(HYMBA_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Union[List[torch.FloatTensor], HybridMambaAttentionDynamicCache]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_router_logits: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, MoeModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_router_logits = ( |
|
output_router_logits if output_router_logits is not None else self.config.output_router_logits |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
past_key_values_length = 0 |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
if use_cache: |
|
use_legacy_cache = False |
|
|
|
if past_key_values is not None: |
|
past_key_values_length = past_key_values.get_usable_length(seq_length, 0) |
|
else: |
|
use_cache = False |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange( |
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) |
|
else: |
|
if self.config.num_memory_tokens > 0 and past_key_values is not None and past_key_values.get_seq_length() == 0: |
|
position_ids = position_ids.view(-1, seq_length + self.config.num_memory_tokens).long() |
|
else: |
|
position_ids = position_ids.view(-1, seq_length).long() |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if self.config.num_memory_tokens > 0 and (past_key_values is None or past_key_values.get_seq_length() == 0): |
|
ori_b, ori_n = inputs_embeds.shape[0], inputs_embeds.shape[1] |
|
|
|
if self.config.memory_tokens_interspersed_every > 0: |
|
mem_every = self.config.memory_tokens_interspersed_every |
|
next_seq_len = math.ceil(ori_n / mem_every) * mem_every |
|
|
|
|
|
inputs_embeds = pad_at_dim(inputs_embeds, (0, next_seq_len - ori_n), dim = -2, value = 0.) |
|
|
|
inputs_embeds = rearrange(inputs_embeds, 'b (n m) d -> (b n) m d', m = mem_every) |
|
|
|
mem = repeat(self.memory_tokens, 'n d -> b n d', b = inputs_embeds.shape[0]) |
|
inputs_embeds, mem_packed_shape = pack((mem, inputs_embeds), 'b * d') |
|
|
|
if self.config.memory_tokens_interspersed_every > 0: |
|
inputs_embeds = rearrange(inputs_embeds, '(b n) m d -> b (n m) d', b = ori_b) |
|
|
|
if position_ids is not None and position_ids.shape[1] != inputs_embeds.shape[1]: |
|
position_ids = torch.arange(inputs_embeds.shape[1], device=inputs_embeds.device).unsqueeze(0) |
|
|
|
attention_mask_raw = attention_mask |
|
|
|
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache: |
|
is_padding_right = attention_mask[:, -1].sum().item() != batch_size |
|
if is_padding_right: |
|
raise ValueError( |
|
"You are attempting to perform batched generation with padding_side='right'" |
|
" this may lead to unexpected behaviour for Flash Attention version of Hymba. Make sure to " |
|
" call `tokenizer.padding_side = 'left'` before tokenizing the input. " |
|
) |
|
|
|
if self._attn_implementation == "flash_attention_2" or self._attn_implementation == "flex": |
|
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None |
|
attention_mask_swa = attention_mask |
|
|
|
elif self._attn_implementation == "sdpa" and not output_attentions: |
|
attention_mask_input = attention_mask |
|
|
|
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( |
|
attention_mask, |
|
(batch_size, seq_length), |
|
inputs_embeds, |
|
past_key_values_length, |
|
) |
|
|
|
if self.sliding_window is not None: |
|
attention_mask_swa = _prepare_4d_causal_attention_mask_for_sdpa( |
|
attention_mask_input, |
|
(batch_size, seq_length), |
|
inputs_embeds, |
|
past_key_values_length, |
|
sliding_window=self.sliding_window |
|
) |
|
|
|
else: |
|
|
|
|
|
attention_mask = _prepare_4d_causal_attention_mask( |
|
attention_mask, |
|
(batch_size, seq_length), |
|
inputs_embeds, |
|
past_key_values_length, |
|
) |
|
|
|
|
|
if self.sliding_window is not None: |
|
attention_mask_swa = _prepare_4d_causal_attention_mask( |
|
attention_mask_input, |
|
(batch_size, seq_length), |
|
inputs_embeds, |
|
past_key_values_length, |
|
sliding_window=self.sliding_window |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
all_router_logits = () if output_router_logits else None |
|
next_decoder_cache = None |
|
|
|
kv_last_layer = None |
|
|
|
shared_kv_cache_dict = {} |
|
|
|
for i, decoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if self.inter_layer_kv_reuse and self.kv_reuse_group is not None: |
|
no_reuse_flag = True |
|
for group_id, item in enumerate(self.kv_reuse_group): |
|
if i in item['consumer']: |
|
kv_last_layer = shared_kv_cache_dict[group_id] |
|
no_reuse_flag = False |
|
|
|
break |
|
|
|
if no_reuse_flag: |
|
kv_last_layer = None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
decoder_layer.__call__, |
|
hidden_states, |
|
attention_mask if (self.sliding_window is None or i in self.global_attn_idx) else attention_mask_swa, |
|
attention_mask_raw, |
|
position_ids, |
|
past_key_values, |
|
output_attentions, |
|
output_router_logits, |
|
use_cache, |
|
kv_last_layer, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask if (self.sliding_window is None or i in self.global_attn_idx) else attention_mask_swa, |
|
attention_mask_raw=attention_mask_raw, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
output_router_logits=output_router_logits, |
|
use_cache=use_cache, |
|
kv_last_layer=kv_last_layer if self.inter_layer_kv_reuse else None, |
|
use_swa=self.sliding_window is not None and i not in self.global_attn_idx, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
if output_router_logits: |
|
all_router_logits += (layer_outputs[3],) |
|
|
|
if self.inter_layer_kv_reuse: |
|
kv_last_layer = layer_outputs[-1] |
|
|
|
if self.kv_reuse_group is not None: |
|
for group_id, item in enumerate(self.kv_reuse_group): |
|
if i == item['producer']: |
|
shared_kv_cache_dict[group_id] = kv_last_layer |
|
break |
|
|
|
del shared_kv_cache_dict |
|
|
|
hidden_states = self.final_layernorm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if self.config.num_memory_tokens > 0 and (past_key_values is None or past_key_values.get_seq_length() == 0): |
|
if self.config.memory_tokens_interspersed_every > 0: |
|
hidden_states = rearrange(hidden_states, 'b (n m) d -> (b n) m d', m = (self.config.num_memory_tokens + self.config.memory_tokens_interspersed_every)) |
|
|
|
mem, hidden_states = unpack(hidden_states, mem_packed_shape, 'b * d') |
|
|
|
if self.config.memory_tokens_interspersed_every > 0: |
|
hidden_states = rearrange(hidden_states, '(b n) m d -> b (n m) d', b = ori_b) |
|
|
|
hidden_states = hidden_states[:, :ori_n, :] |
|
|
|
if past_key_values and not past_key_values.has_previous_state: |
|
past_key_values.has_previous_state = True |
|
|
|
next_cache = None |
|
if use_cache: |
|
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits] |
|
if v is not None |
|
) |
|
return MoeModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
router_logits=all_router_logits, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
class HymbaForCausalLM(HymbaPreTrainedModel): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config: HymbaConfig): |
|
super().__init__(config) |
|
self.config = config |
|
self.model = HymbaModel(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.router_aux_loss_coef = config.router_aux_loss_coef |
|
self.num_experts = config.num_experts |
|
self.num_experts_per_tok = config.num_experts_per_tok |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
@add_start_docstrings_to_model_forward(HYMBA_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_router_logits: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
calc_logits_for_entire_prompt: Optional[bool] = True, |
|
) -> Union[Tuple, MoeCausalLMOutputWithPast]: |
|
|
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
calc_logits_for_entire_prompt (`bool`, *optional*): |
|
Whether or not to calculate the logits for the entire prompt, or just the last token. Only last token |
|
logits are needed for generation, and calculating them only for that token can save memory, |
|
which becomes pretty significant for long sequences. |
|
|
|
Returns: |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_router_logits = ( |
|
output_router_logits if output_router_logits is not None else self.config.output_router_logits |
|
) |
|
|
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
output_router_logits=output_router_logits, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
if calc_logits_for_entire_prompt: |
|
logits = self.lm_head(hidden_states) |
|
else: |
|
logits = self.lm_head(hidden_states[..., -1:, :]) |
|
logits = logits.float() |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
aux_loss = None |
|
if output_router_logits: |
|
aux_loss = load_balancing_loss_func( |
|
outputs.router_logits if return_dict else outputs[-1], |
|
self.num_experts, |
|
self.num_experts_per_tok, |
|
attention_mask, |
|
) |
|
if labels is not None: |
|
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
if output_router_logits: |
|
output = (aux_loss,) + output |
|
return (loss,) + output if loss is not None else output |
|
|
|
|
|
|
|
return MoeCausalLMOutputWithPast( |
|
loss=loss, |
|
aux_loss=aux_loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
router_logits=outputs.router_logits, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
attention_mask=None, |
|
inputs_embeds=None, |
|
output_router_logits=False, |
|
**kwargs, |
|
): |
|
if self.config.num_memory_tokens > 0: |
|
attention_mask = torch.cat([torch.ones(input_ids.shape[0], self.config.num_memory_tokens, device=attention_mask.device), attention_mask], dim=1) |
|
|
|
if past_key_values is not None and past_key_values.get_seq_length() > 0: |
|
if isinstance(past_key_values, Tuple): |
|
if past_key_values[self.model._hymba_layer_index][0].shape[2] > 1: |
|
past_key_values = self._convert_to_hymba_cache(past_key_values) |
|
|
|
if isinstance(past_key_values, Cache): |
|
cache_length = past_key_values.get_seq_length() |
|
past_length = past_key_values.seen_tokens |
|
max_cache_length = past_key_values.get_max_length() |
|
|
|
past_length = cache_length |
|
|
|
else: |
|
cache_length = past_length = past_key_values[self.model._attn_layer_index][0].shape[2] |
|
max_cache_length = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: |
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] |
|
|
|
|
|
|
|
elif self.config.num_memory_tokens <= 0 and past_length < input_ids.shape[1]: |
|
input_ids = input_ids[:, past_length:] |
|
|
|
elif self.config.num_memory_tokens > 0 and past_length < input_ids.shape[1] + self.config.num_memory_tokens: |
|
new_query_id = past_length - self.config.num_memory_tokens |
|
input_ids = input_ids[:, new_query_id:] |
|
|
|
if self.config.sliding_window is not None and (self.config.global_attn_idx is None or len(self.config.global_attn_idx) == 0): |
|
input_ids = input_ids[:, -1:] |
|
|
|
|
|
|
|
|
|
if ( |
|
max_cache_length is not None |
|
and attention_mask is not None |
|
and cache_length + input_ids.shape[1] > max_cache_length |
|
): |
|
attention_mask = attention_mask[:, -max_cache_length:] |
|
else: |
|
past_key_values = HybridMambaAttentionDynamicCache( |
|
self.config, input_ids.shape[0], self.dtype, device=self.device, layer_type=self.config.layer_type |
|
) |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values.get_seq_length() > 0: |
|
position_ids = position_ids[:, -input_ids.shape[1] :] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
"output_router_logits": output_router_logits, |
|
"calc_logits_for_entire_prompt": self.config.calc_logits_for_entire_prompt, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), |
|
) |
|
return reordered_past |
|
|