|
import torch |
|
import torch.nn.functional as F |
|
from peft import PeftModel |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
|
|
from transformers import AutoModel, AutoConfig |
|
from transformers import LlavaNextProcessor |
|
from transformers import LlavaNextForConditionalGeneration, LlavaNextConfig |
|
from transformers.models.llava_next.modeling_llava_next import LlavaNextCausalLMOutputWithPast, image_size_to_num_patches |
|
|
|
class NVMMEmbedModel(LlavaNextForConditionalGeneration): |
|
def __init__(self, config: LlavaNextConfig): |
|
super().__init__(config) |
|
|
|
nvemb_config = AutoConfig.from_pretrained(config.retriever, trust_remote_code=True) |
|
nvemb_model = AutoModel.from_config(nvemb_config, trust_remote_code=True) |
|
self.language_model = nvemb_model.embedding_model |
|
self.latent_attention_model = nvemb_model.latent_attention_model |
|
|
|
self.preprocess_fn = LlavaNextProcessor.from_pretrained(config._name_or_path) |
|
self.preprocess_fn.tokenizer.padding_side = config.padding_side |
|
self.preprocess_fn.tokenizer.add_eos_token = config.add_eos_token |
|
self.global_image_patch_only = config.global_image_patch_only |
|
|
|
|
|
def create_pool_mask(self, attention_mask, instruction_lengths): |
|
pool_mask = attention_mask.clone() |
|
if instruction_lengths.unique().shape[0] == 1: |
|
length = instruction_lengths[0].item() |
|
pool_mask[:, :length] = 0 |
|
else: |
|
for i, length in enumerate(instruction_lengths): |
|
pool_mask[i, :length] = 0 |
|
return pool_mask |
|
|
|
def calculate_instruction_length(self, tokenizer, prompts, prefix): |
|
instructions = [] |
|
instruction_lengths = [] |
|
for prompt in prompts: |
|
if prefix in prompt: |
|
instruction = prompt.split(prefix)[0] |
|
input_ids = tokenizer(instruction, return_tensors=None)['input_ids'] |
|
instruction_length = len(input_ids) |
|
if '<image>' in instruction: |
|
instruction_length += (576 - 1) |
|
instruction_lengths.append(instruction_length) |
|
else: |
|
instruction_lengths.append(0) |
|
return instruction_lengths |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
pixel_values: torch.FloatTensor = None, |
|
image_sizes: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
instruction_lengths: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
vision_feature_layer: Optional[int] = None, |
|
vision_feature_select_strategy: Optional[str] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, LlavaNextCausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, LlavaNextForConditionalGeneration |
|
|
|
>>> model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf") |
|
>>> processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf") |
|
|
|
>>> prompt = "[INST] <image>\nWhat is shown in this image? [/INST]" |
|
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> inputs = processor(text=prompt, images=image, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(**inputs, max_length=30) |
|
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot (...)" |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
vision_feature_layer = ( |
|
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer |
|
) |
|
vision_feature_select_strategy = ( |
|
vision_feature_select_strategy |
|
if vision_feature_select_strategy is not None |
|
else self.config.vision_feature_select_strategy |
|
) |
|
clip_global_image_feature = None |
|
|
|
if inputs_embeds is None: |
|
|
|
|
|
for_inputs_embeds_ids = input_ids.clone() |
|
for_inputs_embeds_ids[(input_ids == self.config.image_token_index)] = 0 |
|
for_inputs_embeds_ids[(input_ids == 32001)] = 2 |
|
inputs_embeds = self.language_model.get_input_embeddings()(for_inputs_embeds_ids) |
|
|
|
if pixel_values is not None and input_ids.shape[1] != 1 and pixel_values.size(0) > 0: |
|
|
|
image_num_patches = [ |
|
image_size_to_num_patches( |
|
image_size=imsize, |
|
grid_pinpoints=self.config.image_grid_pinpoints, |
|
patch_size=self.config.vision_config.image_size, |
|
) |
|
for imsize in image_sizes |
|
] |
|
|
|
if pixel_values.dim() == 5: |
|
|
|
_pixel_values_list = [ |
|
pix_val[:num_patch] for pix_val, num_patch in zip(pixel_values, image_num_patches) |
|
] |
|
if pixel_values.shape[1] == 1: |
|
image_num_patches = [1 for imsize in image_sizes] |
|
pixel_values = torch.cat(_pixel_values_list, dim=0) |
|
elif pixel_values.dim() != 4: |
|
|
|
raise ValueError(f"pixel_values of shape {pixel_values.shape}, expect to be of 4 or 5 dimensions") |
|
|
|
image_features = self.vision_tower(pixel_values, output_hidden_states=True) |
|
clip_global_image_feature = image_features.pooler_output |
|
selected_image_feature = image_features.hidden_states[vision_feature_layer] |
|
|
|
if vision_feature_select_strategy == "default": |
|
selected_image_feature = selected_image_feature[:, 1:] |
|
elif vision_feature_select_strategy == "full": |
|
selected_image_feature = selected_image_feature |
|
|
|
image_features = self.multi_modal_projector(selected_image_feature) |
|
image_features = torch.split(image_features, image_num_patches, dim=0) |
|
|
|
|
|
|
|
image_features, feature_lens = self.pack_image_features( |
|
image_features, |
|
image_sizes, |
|
image_newline=self.image_newline, |
|
) |
|
|
|
inputs_embeds = inputs_embeds.to(image_features.dtype) |
|
inputs_embeds, attention_mask, position_ids, labels, _ = self._merge_input_ids_with_image_features( |
|
image_features, |
|
feature_lens, |
|
inputs_embeds, |
|
input_ids, |
|
attention_mask, |
|
position_ids, |
|
labels=labels, |
|
) |
|
|
|
|
|
elif pixel_values is not None and input_ids.shape[1] != 1 and pixel_values.size(0) == 0: |
|
|
|
pass |
|
|
|
|
|
|
|
elif past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1: |
|
|
|
|
|
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0] |
|
|
|
|
|
batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0) |
|
|
|
|
|
target_length = input_ids.shape[1] |
|
past_length = first_layer_past_key_value.shape[-1] |
|
|
|
extended_attention_mask = torch.ones( |
|
(attention_mask.shape[0], past_length), |
|
dtype=attention_mask.dtype, |
|
device=attention_mask.device, |
|
) |
|
|
|
|
|
|
|
|
|
valid_indices = non_attended_tokens < extended_attention_mask.size(-1) |
|
new_batch_index = batch_index[valid_indices] |
|
new_non_attended_tokens = non_attended_tokens[valid_indices] |
|
|
|
|
|
extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0 |
|
|
|
attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1) |
|
|
|
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 |
|
|
|
outputs = self.language_model( |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
pool_mask = self.create_pool_mask(attention_mask, instruction_lengths) |
|
|
|
embeds = self.latent_attention_model( |
|
outputs.last_hidden_state, |
|
pool_mask, |
|
) |
|
|
|
|
|
return LlavaNextCausalLMOutputWithPast( |
|
loss=None, |
|
logits=None, |
|
past_key_values=None, |
|
hidden_states=embeds, |
|
attentions=outputs.attentions, |
|
image_hidden_states=clip_global_image_feature, |
|
) |
|
|
|
@torch.no_grad() |
|
def encode(self, inputs, is_query = False, instruction = None, max_length = 512, query_prefix = 'Query: '): |
|
assert type(inputs) == list, 'inputs should be a list of dictionay' |
|
prompts, imgs = [], [] |
|
if is_query: |
|
if instruction is not None: |
|
prompt_template = f"Instruct: {instruction}\n{query_prefix}<image>\n<text>" |
|
else: |
|
prompt_template = f"{query_prefix}<image>\n<text>" |
|
else: |
|
prompt_template = f"<image>\n<text>" |
|
|
|
for input_ in inputs: |
|
if 'img' in input_: |
|
imgs.append(input_['img']) |
|
prompt = prompt_template |
|
else: |
|
prompt = prompt_template.replace('<image>\n', '') |
|
|
|
if ('txt' in input_) and (input_['txt'] is not None): |
|
prompt = prompt.replace('<text>', input_['txt']) |
|
else: |
|
prompt = prompt.replace('<text>', '') |
|
|
|
prompts.append(prompt) |
|
|
|
if len(imgs) == 0: |
|
imgs = None |
|
collated_features = self.preprocess_fn(prompts, imgs, return_tensors="pt", padding="longest", max_length=max_length, truncation=True).to(self.device) |
|
if self.global_image_patch_only and (imgs is not None): |
|
collated_features['pixel_values'] = collated_features['pixel_values'][:, 0:1] |
|
|
|
instruction_lengths = self.calculate_instruction_length(self.preprocess_fn.tokenizer, prompts, f'\n{query_prefix}') |
|
collated_features['instruction_lengths'] = torch.tensor(instruction_lengths).to(self.device) |
|
|
|
return self(**collated_features) |
|
|
|
|
|
AutoModel.register(LlavaNextConfig, NVMMEmbedModel) |
|
NVMMEmbedModel.register_for_auto_class("AutoModel") |