|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import List, Optional, Set, Tuple, Union |
|
from types import MethodType |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from timm.models import VisionTransformer, checkpoint_seq |
|
|
|
from .feature_normalizer import IntermediateFeatureNormalizerBase, NullIntermediateFeatureNormalizer |
|
|
|
from .extra_models import DinoWrapper |
|
from .vit_patch_generator import ViTPatchGenerator |
|
from .forward_intermediates import forward_intermediates |
|
|
|
|
|
def _forward_cpe(self: VisionTransformer, x: torch.Tensor) -> torch.Tensor: |
|
x = self.patch_generator(x) |
|
if getattr(self, 'grad_checkpointing', False) and not torch.jit.is_scripting(): |
|
x = checkpoint_seq(self.blocks, x) |
|
else: |
|
x = self.blocks(x) |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
def _take_indices( |
|
num_blocks: int, |
|
n: Optional[Union[int, List[int], Tuple[int]]], |
|
) -> Tuple[Set[int], int]: |
|
if isinstance(n, int): |
|
assert n >= 0 |
|
take_indices = {x for x in range(num_blocks - n, num_blocks)} |
|
else: |
|
take_indices = {num_blocks + idx if idx < 0 else idx for idx in n} |
|
return take_indices, max(take_indices) |
|
|
|
|
|
def _forward_intermediates_cpe( |
|
self, |
|
x: torch.Tensor, |
|
norm: bool = False, |
|
**kwargs, |
|
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: |
|
return forward_intermediates( |
|
self, |
|
patch_extractor=self.patch_generator, |
|
num_summary_tokens=self.patch_generator.num_skip, |
|
num_cls_tokens=self.patch_generator.num_cls_tokens, |
|
norm=self.norm if norm else lambda y: y, |
|
x=x, |
|
**kwargs, |
|
) |
|
|
|
|
|
def _forward_cpe_dinov2(self: DinoWrapper, x: torch.Tensor) -> torch.Tensor: |
|
y = _forward_cpe(self.inner, x) |
|
|
|
return y[:, 0], y[:, self.num_summary_tokens:] |
|
|
|
|
|
def _forward_intermediates_cpe_dinov2(self: DinoWrapper, *args, **kwargs): |
|
return _forward_intermediates_cpe(self.inner, *args, **kwargs) |
|
|
|
|
|
def _enable_cpe_for_timm_vit(model: VisionTransformer, |
|
max_img_size: Union[int, Tuple[int, int]] = 1024, |
|
num_cls_tokens: int = 1, |
|
pos_dropout: float = 0.1, |
|
register_multiple: int = Optional[None], |
|
num_registers: int = Optional[None], |
|
): |
|
if not isinstance(model, VisionTransformer): |
|
raise ValueError("CPE only support for VisionTransformer models!") |
|
|
|
patch_size = model.patch_embed.patch_size[0] |
|
embed_dim = model.embed_dim |
|
input_dims = model.patch_embed.img_size |
|
normalize_patches = not isinstance(model.patch_embed.norm, nn.Identity) |
|
cls_token = model.cls_token is not None |
|
|
|
max_img_size = int(round(max_img_size / patch_size) * patch_size) |
|
|
|
patch_generator = ViTPatchGenerator( |
|
patch_size=patch_size, |
|
embed_dim=embed_dim, |
|
input_dims=input_dims, |
|
normalize_patches=normalize_patches, |
|
cls_token=cls_token, |
|
max_input_dims=max_img_size, |
|
pos_dropout=pos_dropout, |
|
num_cls_tokens=num_cls_tokens, |
|
register_multiple=register_multiple, |
|
num_registers=num_registers, |
|
) |
|
|
|
model.patch_generator = patch_generator |
|
model.patch_embed = None |
|
model.cls_token = None |
|
model.pos_embed = None |
|
model.pos_drop = None |
|
model.patch_size = patch_size |
|
model.num_cls_tokens = num_cls_tokens |
|
model.num_registers = patch_generator.num_registers |
|
|
|
model.forward_features = MethodType(_forward_cpe, model) |
|
model.forward_intermediates = MethodType(_forward_intermediates_cpe, model) |
|
|
|
|
|
def _enable_cpe_for_dv2_reg_vit(model: DinoWrapper, |
|
max_img_size: Union[int, Tuple[int, int]] = 1024, |
|
num_cls_tokens: int = 1, |
|
pos_dropout: float = 0.1, |
|
register_multiple: int = Optional[None], |
|
num_registers: int = Optional[None], |
|
): |
|
patch_size = model.patch_size |
|
embed_dim = model.embed_dim |
|
input_dims = model.inner.patch_embed.patches_resolution |
|
normalize_patches = not isinstance(model.inner.patch_embed.norm, nn.Identity) |
|
cls_token = True |
|
|
|
max_img_size = int(round(max_img_size / patch_size) * patch_size) |
|
|
|
patch_generator = ViTPatchGenerator( |
|
patch_size=patch_size, |
|
embed_dim=embed_dim, |
|
input_dims=input_dims, |
|
normalize_patches=normalize_patches, |
|
cls_token=cls_token, |
|
max_input_dims=max_img_size, |
|
pos_dropout=pos_dropout, |
|
num_cls_tokens=num_cls_tokens, |
|
register_multiple=register_multiple, |
|
num_registers=num_registers, |
|
patch_bias=True, |
|
) |
|
|
|
inner = model.inner |
|
inner.patch_generator = patch_generator |
|
inner.patch_embed = None |
|
inner.cls_token = None |
|
inner.pos_embed = None |
|
inner.register_tokens = None |
|
inner.patch_size = patch_size |
|
|
|
model.forward_features = MethodType(_forward_cpe_dinov2, model) |
|
model.forward_intermediates = MethodType(_forward_intermediates_cpe_dinov2, model) |
|
|
|
|
|
def enable_cpe(model: nn.Module, |
|
*args, |
|
**kwargs, |
|
): |
|
if isinstance(model, VisionTransformer): |
|
_enable_cpe_for_timm_vit(model, *args, **kwargs) |
|
elif isinstance(model, DinoWrapper): |
|
_enable_cpe_for_dv2_reg_vit(model, *args, **kwargs) |
|
else: |
|
raise ValueError(f'CPE not supported for this model type: {type(model)}') |
|
|