File size: 5,929 Bytes
c5e873a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
from typing import List, Optional, Set, Tuple, Union
from types import MethodType
import torch
from torch import nn
from timm.models import VisionTransformer, checkpoint_seq
from .vit_patch_generator import ViTPatchGenerator
def _forward_cpe(self: VisionTransformer, x: torch.Tensor) -> torch.Tensor:
x = self.patch_generator(x)
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint_seq(self.blocks, x)
else:
x = self.blocks(x)
x = self.norm(x)
return x
def _take_indices(
num_blocks: int,
n: Optional[Union[int, List[int], Tuple[int]]],
) -> Tuple[Set[int], int]:
if isinstance(n, int):
assert n >= 0
take_indices = {x for x in range(num_blocks - n, num_blocks)}
else:
take_indices = {num_blocks + idx if idx < 0 else idx for idx in n}
return take_indices, max(take_indices)
def _forward_intermediates_cpe(
self,
x: torch.Tensor,
indices: Optional[Union[int, List[int], Tuple[int]]] = None,
return_prefix_tokens: bool = False,
norm: bool = False,
stop_early: bool = False,
output_fmt: str = 'NCHW',
intermediates_only: bool = False,
aggregation: Optional[str] = "sparse",
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
""" Forward features that returns intermediates.
The Dense layer aggregation method is inspired from the paper: "Dense Connector for MLLMs"
by Yao, Huanjin et al. (2024). arXiv preprint arXiv:2405.13800}
Args:
x: Input image tensor
indices: Take last n blocks if int, select matching indices if sequence
return_prefix_tokens: Return both prefix and spatial intermediate tokens
norm: Apply norm layer to all intermediates
stop_early: Stop iterating over blocks when last desired intermediate hit
output_fmt: Shape of intermediate feature outputs
intermediates_only: Only return intermediate features
aggregation: intermediate layer aggregation method (sparse or dense)
Returns:
"""
assert output_fmt in ('NCHW', 'NLC'), 'Output format must be one of NCHW or NLC.'
assert aggregation in ('sparse', 'dense'), 'Aggregation must be one of sparse or dense.'
reshape = output_fmt == 'NCHW'
intermediates = []
take_indices, max_index = _take_indices(len(self.blocks), indices)
# forward pass
B, _, height, width = x.shape
x = self.patch_generator(x)
if not stop_early: # can't slice blocks in torchscript
blocks = self.blocks
else:
blocks = self.blocks[:max_index + 1]
accumulator = 0
num_accumulated = 0
for i, blk in enumerate(blocks):
x = blk(x)
if aggregation == "dense":
accumulator = accumulator + x
num_accumulated += 1
if i in take_indices:
if aggregation == "dense":
x_ = accumulator / num_accumulated
num_accumulated = 0
accumulator = 0
else:
x_ = x
# normalize intermediates with final norm layer if enabled
intermediates.append(self.norm(x_) if norm else x_)
# process intermediates
# split prefix (e.g. class, distill) and spatial feature tokens
prefix_tokens = [y[:, 0:self.patch_generator.num_cls_tokens] for y in intermediates]
intermediates = [y[:, self.patch_generator.num_skip:] for y in intermediates]
if reshape:
# reshape to BCHW output format
H = height // self.patch_generator.patch_size
W = width // self.patch_generator.patch_size
intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates]
if not torch.jit.is_scripting() and return_prefix_tokens:
# return_prefix not support in torchscript due to poor type handling
intermediates = list(zip(intermediates, prefix_tokens))
if intermediates_only:
return intermediates
x = self.norm(x)
return x, intermediates
def enable_cpe(model: nn.Module,
max_img_size: Union[int, Tuple[int, int]] = 1024,
num_cls_tokens: int = 1,
pos_dropout: float = 0.1,
register_multiple: int = 0,
):
if not isinstance(model, VisionTransformer):
raise ValueError("CPE only support for VisionTransformer models!")
patch_size = model.patch_embed.patch_size[0]
embed_dim = model.embed_dim
input_dims = model.patch_embed.img_size
normalize_patches = not isinstance(model.patch_embed.norm, nn.Identity)
cls_token = model.cls_token is not None
max_img_size = int(round(max_img_size / patch_size) * patch_size)
patch_generator = ViTPatchGenerator(
patch_size=patch_size,
embed_dim=embed_dim,
input_dims=input_dims,
normalize_patches=normalize_patches,
cls_token=cls_token,
max_input_dims=max_img_size,
pos_dropout=pos_dropout,
num_cls_tokens=num_cls_tokens,
register_multiple=register_multiple,
)
model.patch_generator = patch_generator
model.patch_embed = None
model.cls_token = None
model.pos_embed = None
model.pos_drop = None
model.num_cls_tokens = num_cls_tokens
model.num_registers = patch_generator.num_registers
model.forward_features = MethodType(_forward_cpe, model)
model.forward_intermediates = MethodType(_forward_intermediates_cpe, model)
|