File size: 8,480 Bytes
8a44aab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
from logging import getLogger
import math
import os
from typing import Union, Tuple
from types import MethodType
import torch
from torch import nn
from torch.nn import functional as F
from torch.nn.utils import parametrize
from torch.nn.utils.parametrizations import _SpectralNorm
from timm.models.vision_transformer import Attention, Mlp
_EPS = 1e-5
class _SNReweight(_SpectralNorm):
def __init__(self, weight: torch.Tensor, *args, init_norm_to_current: bool = False, alpha: float = 0.05, version: int = 2, **kwargs):
super().__init__(weight, *args, **kwargs)
self.alpha = alpha
self.version = version
self.register_buffer('_sn_version', torch.tensor(version))
if init_norm_to_current:
# This will set the numerator to match the denominator, which should preserve the original values
init_scale = self._get_sigma(weight).item()
else:
init_scale = 1.0
if version == 1:
init_value = init_scale
elif version == 2:
t = init_scale - alpha
if t < _EPS:
getLogger("spectral_reparam").warn(f'The initialized spectral norm {init_scale} is too small to be represented. Setting to {_EPS} instead.')
t = _EPS
init_value = math.log(math.exp(t) - 1)
else:
raise ValueError(f'Unsupported version: {version}')
# Make 2D so that weight decay gets applied
self.scale = nn.Parameter(torch.tensor([[init_value]], dtype=torch.float32, device=weight.device))
# Re-implementing this because we need to make division by sigma safe
def _get_sigma(self, weight: torch.Tensor) -> torch.Tensor:
if weight.ndim == 1:
# Faster and more exact path, no need to approximate anything
sigma = weight.norm()
else:
weight_mat = self._reshape_weight_to_matrix(weight)
if self.training:
self._power_method(weight_mat, self.n_power_iterations)
# See above on why we need to clone
u = self._u.clone(memory_format=torch.contiguous_format)
v = self._v.clone(memory_format=torch.contiguous_format)
# The proper way of computing this should be through F.bilinear, but
# it seems to have some efficiency issues:
# https://github.com/pytorch/pytorch/issues/58093
sigma = torch.dot(u, torch.mv(weight_mat, v))
return sigma + self.eps
def forward(self, weight: torch.Tensor, *args, **kwargs):
dtype = weight.dtype
sigma = self._get_sigma(weight, *args, **kwargs)
if self.version == 1:
scale = self.scale
elif self.version == 2:
scale = F.softplus(self.scale) + self.alpha
else:
raise ValueError(f'Unsupported version: {self.version}')
scale = scale.float() / sigma.float()
y = weight * scale
if dtype in (torch.float16, torch.bfloat16):
y = y.to(dtype)
return y
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
version_key = f'{prefix}_sn_version'
if version_key not in state_dict:
self.version = 1
state_dict[version_key] = torch.tensor(1)
return super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
class _AttnSNReweight(nn.Module):
def __init__(self, weight: torch.Tensor, *args, init_norm_to_current: bool = False, renorm_values: bool = False, **kwargs):
super().__init__()
parts = weight.split(weight.shape[0] // 3, dim=0)
ct = 2 if not renorm_values else 3
self.parts = nn.ModuleList([
_SNReweight(p, *args, init_norm_to_current=init_norm_to_current, **kwargs) if i < ct else nn.Identity()
for i, p in enumerate(parts)
])
def forward(self, weight: torch.Tensor, *args, **kwargs):
parts = weight.split(weight.shape[0] // 3, dim=0)
parts = [
fn(p)
for fn, p in zip(self.parts, parts)
]
return torch.cat(parts, dim=0)
def enable_spectral_reparam(model: nn.Module,
n_power_iterations: int = 1,
eps: float = 1e-6,
init_norm_to_current: bool = False,
renorm_values: bool = True,
renorm_mlp: bool = True):
# print('Enabling spectral reparametrization')
for mod in model.modules():
if isinstance(mod, Attention):
parametrize.register_parametrization(
mod.qkv,
'weight',
_AttnSNReweight(mod.qkv.weight, n_power_iterations, dim=0, eps=eps, init_norm_to_current=init_norm_to_current, renorm_values=renorm_values),
)
pass
elif isinstance(mod, Mlp) and renorm_mlp:
parametrize.register_parametrization(
mod.fc1,
'weight',
_SNReweight(mod.fc1.weight, n_power_iterations, dim=0, eps=eps, init_norm_to_current=init_norm_to_current),
)
parametrize.register_parametrization(
mod.fc2,
'weight',
_SNReweight(mod.fc2.weight, n_power_iterations, dim=0, eps=eps, init_norm_to_current=init_norm_to_current),
)
pass
def configure_spectral_reparam_from_args(model: nn.Module, args):
spectral_reparam = getattr(args, 'spectral_reparam', False)
if isinstance(spectral_reparam, bool) and spectral_reparam:
enable_spectral_reparam(model, init_norm_to_current=args.pretrained)
elif isinstance(spectral_reparam, dict):
enable_spectral_reparam(
model,
n_power_iterations=spectral_reparam.get('n_power_iterations', 1),
eps=spectral_reparam.get('eps', 1e-12),
init_norm_to_current=args.pretrained,
)
def disable_spectral_reparam(model: nn.Module):
for mod in model.modules():
if isinstance(mod, Attention):
parametrize.remove_parametrizations(mod.qkv, 'weight')
pass
elif isinstance(mod, Mlp):
parametrize.remove_parametrizations(mod.fc1, 'weight')
parametrize.remove_parametrizations(mod.fc2, 'weight')
pass
if __name__ == '__main__':
import argparse
from . import radio_model as create_model
parser = argparse.ArgumentParser(description='Remove parametrization from state dict')
parser.add_argument('--checkpoint', type=str, required=True, help='The checkpoint to load')
parser.add_argument('--output', type=str, default='', help='Where to store the checkpoint')
parser.add_argument('--release', default=False, action='store_true', help='Prune extraneous checkpoint fields')
parser.add_argument('--strict', default=False, action='store_true', help='Strictly load the state dict')
args = parser.parse_args()
if not args.output:
chk_dir, chk_name = os.path.split(args.checkpoint)
args.output = os.path.join(chk_dir, f'clean_{chk_name}')
print(f'Set output to "{args.output}"')
chk = torch.load(args.checkpoint, map_location='cpu', mmap=True)
model = create_model.create_model_from_args(chk['args'])
key = 'base_model.'
mod_state = dict()
extra_state = dict()
for k, v in chk['state_dict'].items():
if k.startswith(key):
mod_state[k[len(key):]] = v
else:
extra_state[k] = v
chk_load_info = model.load_state_dict(mod_state, strict=args.strict)
if chk_load_info.unexpected_keys or chk_load_info.missing_keys:
print(chk_load_info)
if chk['args'].spectral_reparam:
disable_spectral_reparam(model)
if hasattr(chk['args'], 'dtype'):
model.to(dtype=chk['args'].dtype)
mod_state = model.state_dict()
final_state = dict()
final_state.update({f'{key}{k}': v for k, v in mod_state.items()})
final_state.update(extra_state)
chk['state_dict'] = final_state
chk['args'].spectral_reparam = False
if args.release:
chk = {
'arch': chk['arch'],
'epoch': chk['epoch'],
'state_dict': chk['state_dict'],
'args': chk['args'],
}
torch.save(chk, args.output)
pass
|