File size: 8,480 Bytes
8a44aab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
from logging import getLogger
import math
import os
from typing import Union, Tuple
from types import MethodType

import torch
from torch import nn
from torch.nn import functional as F
from torch.nn.utils import parametrize
from torch.nn.utils.parametrizations import _SpectralNorm

from timm.models.vision_transformer import Attention, Mlp

_EPS = 1e-5


class _SNReweight(_SpectralNorm):
    def __init__(self, weight: torch.Tensor, *args, init_norm_to_current: bool = False, alpha: float = 0.05, version: int = 2, **kwargs):
        super().__init__(weight, *args, **kwargs)

        self.alpha = alpha
        self.version = version
        self.register_buffer('_sn_version', torch.tensor(version))

        if init_norm_to_current:
            # This will set the numerator to match the denominator, which should preserve the original values
            init_scale = self._get_sigma(weight).item()
        else:
            init_scale = 1.0

        if version == 1:
            init_value = init_scale
        elif version == 2:
            t = init_scale - alpha
            if t < _EPS:
                getLogger("spectral_reparam").warn(f'The initialized spectral norm {init_scale} is too small to be represented. Setting to {_EPS} instead.')
                t = _EPS

            init_value = math.log(math.exp(t) - 1)
        else:
            raise ValueError(f'Unsupported version: {version}')

        # Make 2D so that weight decay gets applied
        self.scale = nn.Parameter(torch.tensor([[init_value]], dtype=torch.float32, device=weight.device))

    # Re-implementing this because we need to make division by sigma safe
    def _get_sigma(self, weight: torch.Tensor) -> torch.Tensor:
        if weight.ndim == 1:
            # Faster and more exact path, no need to approximate anything
            sigma = weight.norm()
        else:
            weight_mat = self._reshape_weight_to_matrix(weight)
            if self.training:
                self._power_method(weight_mat, self.n_power_iterations)
            # See above on why we need to clone
            u = self._u.clone(memory_format=torch.contiguous_format)
            v = self._v.clone(memory_format=torch.contiguous_format)
            # The proper way of computing this should be through F.bilinear, but
            # it seems to have some efficiency issues:
            # https://github.com/pytorch/pytorch/issues/58093
            sigma = torch.dot(u, torch.mv(weight_mat, v))

        return sigma + self.eps

    def forward(self, weight: torch.Tensor, *args, **kwargs):
        dtype = weight.dtype
        sigma = self._get_sigma(weight, *args, **kwargs)

        if self.version == 1:
            scale = self.scale
        elif self.version == 2:
            scale = F.softplus(self.scale) + self.alpha
        else:
            raise ValueError(f'Unsupported version: {self.version}')

        scale = scale.float() / sigma.float()

        y = weight * scale

        if dtype in (torch.float16, torch.bfloat16):
            y = y.to(dtype)
        return y

    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
        version_key = f'{prefix}_sn_version'
        if version_key not in state_dict:
            self.version = 1
            state_dict[version_key] = torch.tensor(1)
        return super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)


class _AttnSNReweight(nn.Module):
    def __init__(self, weight: torch.Tensor, *args, init_norm_to_current: bool = False, renorm_values: bool = False, **kwargs):
        super().__init__()

        parts = weight.split(weight.shape[0] // 3, dim=0)

        ct = 2 if not renorm_values else 3

        self.parts = nn.ModuleList([
            _SNReweight(p, *args, init_norm_to_current=init_norm_to_current, **kwargs) if i < ct else nn.Identity()
            for i, p in enumerate(parts)
        ])

    def forward(self, weight: torch.Tensor, *args, **kwargs):
        parts = weight.split(weight.shape[0] // 3, dim=0)

        parts = [
            fn(p)
            for fn, p in zip(self.parts, parts)
        ]

        return torch.cat(parts, dim=0)


def enable_spectral_reparam(model: nn.Module,
                            n_power_iterations: int = 1,
                            eps: float = 1e-6,
                            init_norm_to_current: bool = False,
                            renorm_values: bool = True,
                            renorm_mlp: bool = True):
    # print('Enabling spectral reparametrization')
    for mod in model.modules():
        if isinstance(mod, Attention):
            parametrize.register_parametrization(
                mod.qkv,
                'weight',
                _AttnSNReweight(mod.qkv.weight, n_power_iterations, dim=0, eps=eps, init_norm_to_current=init_norm_to_current, renorm_values=renorm_values),
            )
            pass
        elif isinstance(mod, Mlp) and renorm_mlp:
            parametrize.register_parametrization(
                mod.fc1,
                'weight',
                _SNReweight(mod.fc1.weight, n_power_iterations, dim=0, eps=eps, init_norm_to_current=init_norm_to_current),
            )
            parametrize.register_parametrization(
                mod.fc2,
                'weight',
                _SNReweight(mod.fc2.weight, n_power_iterations, dim=0, eps=eps, init_norm_to_current=init_norm_to_current),
            )
            pass


def configure_spectral_reparam_from_args(model: nn.Module, args):
    spectral_reparam = getattr(args, 'spectral_reparam', False)
    if isinstance(spectral_reparam, bool) and spectral_reparam:
        enable_spectral_reparam(model, init_norm_to_current=args.pretrained)
    elif isinstance(spectral_reparam, dict):
        enable_spectral_reparam(
            model,
            n_power_iterations=spectral_reparam.get('n_power_iterations', 1),
            eps=spectral_reparam.get('eps', 1e-12),
            init_norm_to_current=args.pretrained,
        )


def disable_spectral_reparam(model: nn.Module):
    for mod in model.modules():
        if isinstance(mod, Attention):
            parametrize.remove_parametrizations(mod.qkv, 'weight')
            pass
        elif isinstance(mod, Mlp):
            parametrize.remove_parametrizations(mod.fc1, 'weight')
            parametrize.remove_parametrizations(mod.fc2, 'weight')
            pass


if __name__ == '__main__':
    import argparse
    from . import radio_model as create_model

    parser = argparse.ArgumentParser(description='Remove parametrization from state dict')
    parser.add_argument('--checkpoint', type=str, required=True, help='The checkpoint to load')
    parser.add_argument('--output', type=str, default='', help='Where to store the checkpoint')
    parser.add_argument('--release', default=False, action='store_true', help='Prune extraneous checkpoint fields')
    parser.add_argument('--strict', default=False, action='store_true', help='Strictly load the state dict')

    args = parser.parse_args()

    if not args.output:
        chk_dir, chk_name = os.path.split(args.checkpoint)
        args.output = os.path.join(chk_dir, f'clean_{chk_name}')
        print(f'Set output to "{args.output}"')

    chk = torch.load(args.checkpoint, map_location='cpu', mmap=True)

    model = create_model.create_model_from_args(chk['args'])

    key = 'base_model.'
    mod_state = dict()
    extra_state = dict()
    for k, v in chk['state_dict'].items():
        if k.startswith(key):
            mod_state[k[len(key):]] = v
        else:
            extra_state[k] = v

    chk_load_info = model.load_state_dict(mod_state, strict=args.strict)
    if chk_load_info.unexpected_keys or chk_load_info.missing_keys:
        print(chk_load_info)

    if chk['args'].spectral_reparam:
        disable_spectral_reparam(model)

    if hasattr(chk['args'], 'dtype'):
        model.to(dtype=chk['args'].dtype)

    mod_state = model.state_dict()
    final_state = dict()
    final_state.update({f'{key}{k}': v for k, v in mod_state.items()})
    final_state.update(extra_state)

    chk['state_dict'] = final_state
    chk['args'].spectral_reparam = False

    if args.release:
        chk = {
            'arch': chk['arch'],
            'epoch': chk['epoch'],
            'state_dict': chk['state_dict'],
            'args': chk['args'],
        }

    torch.save(chk, args.output)
    pass